期刊文献+
共找到578篇文章
< 1 2 29 >
每页显示 20 50 100
基于密文KNN检索的室内定位隐私保护算法 被引量:1
1
作者 欧锦添 乐燕芬 施伟斌 《数据采集与处理》 CSCD 北大核心 2024年第2期456-470,共15页
在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于... 在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于三方的定位隐私保护算法,能有效提升对LSP指纹信息隐私的保护强度并降低计算开销。服务器和用户分别完成对指纹信息和定位请求的加密,而第三方则基于加密指纹库和加密定位请求,在隐私状态下完成对用户的位置估计。所提算法把各参考点的位置信息随机嵌入指纹,可避免恶意用户获取各参考点的具体位置;进一步利用布隆滤波器在隐藏接入点信息的情况下,第三方可完成参考点的在线匹配,实现对用户隐私状态下的粗定位,可与定位算法结合降低计算开销。在公共数据集和实验室数据集中,对两种算法的安全、开销和定位性能进行了全面的评估。与同类加密算法比较,在不降低定位精度的情况下,进一步增强了对数据隐私的保护。 展开更多
关键词 隐私保护 指纹定位 密文k-近邻检索 布隆滤波器 WIFI
下载PDF
基于KNN算法的教学质量评价模型建立
2
作者 张晓东 张晓晓 《宁德师范学院学报(自然科学版)》 2024年第3期324-329,共6页
针对当前教学质量评价存在主观性较强的不足,基于K-最近邻(K-nearest neighbor,KNN)算法,提出教学质量评价模型.确立教学质量评价体系;以教学督导的评价数据为样本数据,通过交叉验证求解最近邻算法参数K的最佳值,从而建立教学质量评价模... 针对当前教学质量评价存在主观性较强的不足,基于K-最近邻(K-nearest neighbor,KNN)算法,提出教学质量评价模型.确立教学质量评价体系;以教学督导的评价数据为样本数据,通过交叉验证求解最近邻算法参数K的最佳值,从而建立教学质量评价模型.模型以专家数据为样本,评价精度高,评价结果具有较高的可靠性,能根据相关指标快速产生评价等级,提高了教学质量评价效率,使教学质量评价更加客观全面. 展开更多
关键词 教学质量评价 k-最近邻(knn)算法 交叉验证
下载PDF
基于PCA-BOA-KNN模型的水下爆炸舰船结构破损评估
3
作者 梁潇帝 刘寅东 《中国舰船研究》 CSCD 北大核心 2024年第3期150-157,共8页
[目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速... [目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速度峰值、位移峰值、应力峰值和超压峰值进行降维处理,得到2个本征特征量;最后,将由主成分分析法得到的结果代入贝叶斯网络优化(BOA)的KNN模型,通过建立的破口预报模型,预测一组工况下舰船不同剖面处的破口情况。[结果]结果显示,通过主成分分析法提取的前2个因子的累计贡献率为85.165%,这2个因子可代表5个特征量的主要信息;基于PCA-BOAKNN模型的破口预报结果与仿真结果基本一致。[结论]所提的预报模型方法对舰船结构破口预报有效,对于不同主尺度船体结构破口预报有一定的参考价值。 展开更多
关键词 结构分析 主成分分析 knn算法 水下爆炸
下载PDF
基于投票加权GS-KNN的离心风机故障诊断
4
作者 曾学文 陈高超 +2 位作者 付名江 邵峰 伍仁杰 《节能》 2024年第1期47-50,共4页
风机作为火力发电的重要辅机,对其进行及时高效的故障诊断,可有效减少停机损失,提高火力发电效率。k近邻(KNN)对非平稳数据样本有良好的分类能力。为了改进传统KNN算法存在的缺陷,构建投票加权网格搜索-k近邻算法(投票加权GS-KNN)故障... 风机作为火力发电的重要辅机,对其进行及时高效的故障诊断,可有效减少停机损失,提高火力发电效率。k近邻(KNN)对非平稳数据样本有良好的分类能力。为了改进传统KNN算法存在的缺陷,构建投票加权网格搜索-k近邻算法(投票加权GS-KNN)故障诊断模型,利用网格搜索完成k值的选取,基于前k个近邻构建与距离值呈负相关的权值投票公式,依据投票得分情况进行故障诊断。使用投票加权GS-KNN模型对离心风机常见的9种运行状态进行故障诊断,拟合k值与准确率的关系,诊断准确率可达到100%。 展开更多
关键词 故障诊断 火力发电 网格搜索 k近邻算法 投票加权
下载PDF
FEW-NNN: A Fuzzy Entropy Weighted Natural Nearest Neighbor Method for Flow-Based Network Traffic Attack Detection 被引量:7
5
作者 Liangchen Chen Shu Gao +2 位作者 Baoxu Liu Zhigang Lu Zhengwei Jiang 《China Communications》 SCIE CSCD 2020年第5期151-167,共17页
Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the foc... Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the focus of many initiatives. Effectively analyzing massive network security data with high dimensions for suspicious flow diagnosis is a huge challenge. In addition, the uneven distribution of network traffic does not fully reflect the differences of class sample features, resulting in the low accuracy of attack detection. To solve these problems, a novel approach called the fuzzy entropy weighted natural nearest neighbor(FEW-NNN) method is proposed to enhance the accuracy and efficiency of flowbased network traffic attack detection. First, the FEW-NNN method uses the Fisher score and deep graph feature learning algorithm to remove unimportant features and reduce the data dimension. Then, according to the proposed natural nearest neighbor searching algorithm(NNN_Searching), the density of data points, each class center and the smallest enclosing sphere radius are determined correspondingly. Finally, a fuzzy entropy weighted KNN classification method based on affinity is proposed, which mainly includes the following three steps: 1、 the feature weights of samples are calculated based on fuzzy entropy values, 2、 the fuzzy memberships of samples are determined based on affinity among samples, and 3、 K-neighbors are selected according to the class-conditional weighted Euclidean distance, the fuzzy membership value of the testing sample is calculated based on the membership of k-neighbors, and then all testing samples are classified according to the fuzzy membership value of the samples belonging to each class;that is, the attack type is determined. The method has been applied to the problem of attack detection and validated based on the famous KDD99 and CICIDS-2017 datasets. From the experimental results shown in this paper, it is observed that the FEW-NNN method improves the accuracy and efficiency of flow-based network traffic attack detection. 展开更多
关键词 fuzzy entropy weighted knn network attack detection fuzzy membership natural nearest neighbor network security intrusion detection system
下载PDF
激光点云线性KNN算法FPGA实现及加速 被引量:1
6
作者 陈小宇 阳梦雪 +1 位作者 李常对 赵鹏程 《应用科学学报》 CAS CSCD 北大核心 2023年第5期831-839,共9页
针对三维激光点云线性K最近邻(K-nearest neighbor, KNN)搜索耗时长的问题,提出了一种利用多处理器片上系统(multi-processor system on chip, MPSoC)现场可编程门阵列(field-programmable gate array,FPGA)实现三维激光点云KNN快速搜... 针对三维激光点云线性K最近邻(K-nearest neighbor, KNN)搜索耗时长的问题,提出了一种利用多处理器片上系统(multi-processor system on chip, MPSoC)现场可编程门阵列(field-programmable gate array,FPGA)实现三维激光点云KNN快速搜索的方法。首先给出了三维激光点云KNN算法的MPSoC FPGA实现框架;然后详细阐述了每个模块的设计思路及实现过程;最后利用MZU15A开发板和天眸16线旋转机械激光雷达搭建了测试平台,完成了三维激光点云KNN算法MPSoC FPGA加速的测试验证。实验结果表明:基于MPSoC FPGA实现的三维激光点云KNN算法能在保证邻近点搜索精度的情况下,减少邻近点搜索耗时。 展开更多
关键词 三维激光点云匹配 k最近邻算法 现场可编程门阵列加速 并行计算
下载PDF
融入KNN算法的二维数组教学案例设计
7
作者 张红霞 高荣 +1 位作者 徐辉 柯琦 《计算机时代》 2023年第6期142-144,148,共4页
为了让计算机专业学生在专业基础课中尽早接触人工智能中的一些概念和算法,激发学生的学习兴趣,设计了一个融入K-近邻算法(K-Nearest Neighbor,KNN)的二维数组教学案例,并对案例教学实施过程、实践任务分解、案例运用效果等方面进行了... 为了让计算机专业学生在专业基础课中尽早接触人工智能中的一些概念和算法,激发学生的学习兴趣,设计了一个融入K-近邻算法(K-Nearest Neighbor,KNN)的二维数组教学案例,并对案例教学实施过程、实践任务分解、案例运用效果等方面进行了阐述。实践结果表明,使用该案例进行教学有利于提高课程教学质量。 展开更多
关键词 二维数组 knn 教学案例 人工智能
下载PDF
一种基于特征加权的K Nearest Neighbor算法 被引量:6
8
作者 桑应宾 刘琼荪 《海南大学学报(自然科学版)》 CAS 2008年第4期352-355,共4页
传统的KNN算法一般采用欧式距离公式度量两样本间的距离.由于在实际样本数据集合中每一个属性对样本的贡献作用是不尽相同的,通常采用加权欧式距离公式.笔者提出一种计算权重的方法,即基于特征加权KNN算法.经实验证明,该算法与经典的赋... 传统的KNN算法一般采用欧式距离公式度量两样本间的距离.由于在实际样本数据集合中每一个属性对样本的贡献作用是不尽相同的,通常采用加权欧式距离公式.笔者提出一种计算权重的方法,即基于特征加权KNN算法.经实验证明,该算法与经典的赋权算法相比具有较好的分类效果. 展开更多
关键词 特征权重 k近邻 交叉验证
下载PDF
面向申威架构的KNN并行算法实现与优化 被引量:5
9
作者 王其涵 庞建民 +3 位作者 岳峰 祝迪 沈莉 肖谦 《计算机工程》 CAS CSCD 北大核心 2023年第5期286-294,共9页
K近邻(KNN)是人工智能中最常用的分类算法,其性能提升对于海量数据的整理分析、大数据分类等任务具有重要意义。目前新一代神威超级计算机正处于应用发展的初始阶段,结合新一代申威异构众核处理器的结构特性,充分利用庞大的计算资源实... K近邻(KNN)是人工智能中最常用的分类算法,其性能提升对于海量数据的整理分析、大数据分类等任务具有重要意义。目前新一代神威超级计算机正处于应用发展的初始阶段,结合新一代申威异构众核处理器的结构特性,充分利用庞大的计算资源实现高效的KNN算法是海量数据分析整理的现实需求。根据SW26010pro处理器的结构特性,采用主从加速编程模型实现一种基础版本的KNN并行算法,其将计算核心传输到从核上,实现了线程级并行。分析影响基础并行算法性能的关键因素并提出优化算法SWKNN,不同于基础并行KNN算法的任务划分方式,SWKNN采用任务重划分策略,以避免冗余计算开销。通过数据流水优化、从核间通信优化、二次负载均衡优化等步骤减少不必要的通信开销,从而有效缓解访存压力并进一步提升算法性能。实验结果表明,与串行KNN算法相比,面向申威架构的基础并行KNN算法在SW26010pro处理器的单核组上可以获得最高48倍的加速效果,在同等数据规模下,SWKNN算法较基础并行KNN算法又可以获得最高399倍的加速效果。 展开更多
关键词 异构众核处理器 k近邻算法 并行计算 算法优化 分类性能
下载PDF
基于聚类优选自适应KNN的改进定位算法 被引量:6
10
作者 商磊 关维国 龚瑞雪 《传感器与微系统》 CSCD 北大核心 2023年第3期136-139,共4页
针对室内复杂环境下,WiFi定位算法选取固定K近邻(KNN)会导致定位精度变差的问题,提出基于MeanShift聚类选取自适应KNN的混合相似度加权KNN(MWKNN)定位算法,并基于几何位置对自适应KNN进行动态优选。通过MeanShift聚类和几何位置动态优... 针对室内复杂环境下,WiFi定位算法选取固定K近邻(KNN)会导致定位精度变差的问题,提出基于MeanShift聚类选取自适应KNN的混合相似度加权KNN(MWKNN)定位算法,并基于几何位置对自适应KNN进行动态优选。通过MeanShift聚类和几何位置动态优选自适应KNN进行加权KNN(WKNN)算法定位估计,削弱了含有较大误差的近邻点参与定位的影响,显著提高了算法的定位精度。实验结果表明:在3 m网格及3 dBm噪声标准差条件下,改进MWKNN定位算法的均方根误差为0.92 m,平均定位误差小于0.74 m;2 m精度下的概率达到96%。定位精度明显优于传统KNN和WKNN算法,同时提升了定位结果的稳定性。 展开更多
关键词 室内定位 MeanShift聚类 几何位置优选 自适应k近邻 加权k近邻定位
下载PDF
基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法
11
作者 赵晓峰 王平水 《传感技术学报》 CAS CSCD 北大核心 2024年第6期1056-1060,共5页
无线传感网络节点体积小,隐蔽性强,节点复制攻击检测的难度较大,为此提出一种基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法。通过信标节点的空间位置数据与相距跳数得出各节点之间的相似程度,结合高斯径向基核函数求解未... 无线传感网络节点体积小,隐蔽性强,节点复制攻击检测的难度较大,为此提出一种基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法。通过信标节点的空间位置数据与相距跳数得出各节点之间的相似程度,结合高斯径向基核函数求解未知节点的横轴、纵轴的空间坐标,确定各网络节点的空间位置;根据网络节点的属性特征与投票机制建立节点复制攻击模型,凭借组合加权k近邻分类法划分节点类型,并将结果传送至簇头节点,由簇头节点做出最后的仲裁,识别出节点复制攻击行为。仿真结果表明,所提方法的节点复制攻击检测率最大值为99.5%,最小值为97.9%,对节点复制攻击检测的耗时为5.41 s,通信开销数据包数量最大值为209个,最小值为81个。 展开更多
关键词 无线传感网络 攻击检测 组合加权k近邻分类 复制节点 部署区域 信标节点
下载PDF
基于重构误差和多块建模策略的kNN故障监测 被引量:3
12
作者 郑静 熊伟丽 吴晓东 《系统仿真学报》 CAS CSCD 北大核心 2023年第1期95-109,共15页
针对基于k近邻(k-nearest neighbor,kNN)的故障监测算法中,引发故障的异常信息易被正常信息淹没,导致故障检测不及时和报警率低的问题,利用自编码器和多块建模策略提出一种基于重构误差的k NN故障监测方法。该方法利用正常工况数据集训... 针对基于k近邻(k-nearest neighbor,kNN)的故障监测算法中,引发故障的异常信息易被正常信息淹没,导致故障检测不及时和报警率低的问题,利用自编码器和多块建模策略提出一种基于重构误差的k NN故障监测方法。该方法利用正常工况数据集训练自编码器模型,基于该模型进行重构误差提取以解决异常信息易被淹没的问题。进一步考虑微小偏移和振荡等故障特征,采用多块建模策略,对各子块分别计算统计量并融合检测。通过一个数值例子与田纳西-伊斯曼(Tennessee-Eastman,TE)过程进行仿真与分析,结果验证了所提方法的有效性与监测性能的提升。 展开更多
关键词 k近邻 重构误差 故障监测 信息提取 多块建模
下载PDF
基于KNN算法与φ-OTDR系统的高铁声屏障故障识别方法 被引量:1
13
作者 付达靓 姚媛媛 +6 位作者 刘华如 高乾熠 李英 张旭苹 戴程程 邹宁睦 张益昕 《光电子技术》 CAS 2023年第3期261-268,共8页
提出了一种基于K近邻(K-nearest neighbors,KNN)算法和相位敏感光时域反射(Phase-sensitive optical time domain reflectometry,φ-OTDR)系统的高铁声屏障故障识别方法。设计了V字型光缆敷设方式,能够感知声屏障不同高度吸声板在脉动... 提出了一种基于K近邻(K-nearest neighbors,KNN)算法和相位敏感光时域反射(Phase-sensitive optical time domain reflectometry,φ-OTDR)系统的高铁声屏障故障识别方法。设计了V字型光缆敷设方式,能够感知声屏障不同高度吸声板在脉动力冲击下的振动,并利用φ-OTDR系统采集振动信号。对振动信号进行多域特征提取以及K近邻分类后,可以实现对声屏障故障状态识别。实验结果表明,在复杂场景下对于故障点的识别正确率达到了90.9%。该方法为声屏障故障识别提供了一条可行的技术路线,能够减少对专业人员的依赖,对于提升高铁声屏障智能运维水平具有重要意义。 展开更多
关键词 相位敏感光时域反射 声屏障 多域特征提取 k近邻
下载PDF
基于EEMD-kNN的工业过程微小故障检测 被引量:2
14
作者 郭小萍 滕佳岐 李元 《计算机应用与软件》 北大核心 2023年第4期36-40,53,共6页
针对非线性工业过程早期发生的微小故障不易检出的问题,提出一种基于集合经验模态分解(Ensemble empirical Mode Decomposition,EEMD)的k近邻(k-Nearest Neighbor,kNN)指标累积和故障检测方法(EEMD-kNN)。通过EEMD预处理原始建模数据,... 针对非线性工业过程早期发生的微小故障不易检出的问题,提出一种基于集合经验模态分解(Ensemble empirical Mode Decomposition,EEMD)的k近邻(k-Nearest Neighbor,kNN)指标累积和故障检测方法(EEMD-kNN)。通过EEMD预处理原始建模数据,在本征函数构建的数据空间中引入kNN规则,提出构造一种加权因子来强化特征,使重构建模数据集更好地包含数据的非线性特征;再一次采用kNN规则提取重构样本的非线性特征,并构建k近邻距离平方累积和统计量,通过核密度估计法确定其控制限。通过一个数值案例和TE(Tenessee Eastman)过程进行实验仿真,并与kNN和EEMD-PCA方法进行对比,结果验证了该方法的有效性。 展开更多
关键词 集合经验模态分解 k近邻 非线性 微小故障检测
下载PDF
基于EDA的加权KNN分类算法
15
作者 谢雨寒 潘峰 《计算机时代》 2023年第8期37-40,共4页
针对传统K近邻(KNN)算法对不平衡数据集分类的不足,提出一种基于分布估计算法改进的加权KNN算法EDA-KNN。在没有先验知识的前提下,为了求解最优加权KNN算法的权重向量,构建矩阵结构种群。运用分布估计算法建立概率模型,进行采样、寻优... 针对传统K近邻(KNN)算法对不平衡数据集分类的不足,提出一种基于分布估计算法改进的加权KNN算法EDA-KNN。在没有先验知识的前提下,为了求解最优加权KNN算法的权重向量,构建矩阵结构种群。运用分布估计算法建立概率模型,进行采样、寻优等一系列操作,经过若干次迭代,最终获得使样本分类准确率达到最高的权重向量。通过对多个数据集进行分类,结果表明,EDA-KNN算法能够显著提升对于不平衡数据集分类的准确率,分类器性能稳定。 展开更多
关键词 不平衡数据集 knn算法 分布估计算法 矩阵结构 分级权重
下载PDF
基于邻域互信息与K-means特征聚类的特征选择 被引量:1
16
作者 孙林 梁娜 徐久成 《智能系统学报》 CSCD 北大核心 2024年第4期983-996,共14页
针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为... 针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为自适应邻域半径,确定样本的邻域集,并由此构建自适应邻域熵、邻域互信息、归一化邻域互信息等度量,反映特征之间的相关性;然后,基于归一化邻域互信息构建自适应K近邻集合,利用Pearson相关系数表示特征的权重定义加权K近邻密度,实现自动选取K-means算法的簇中心,进而完成K-means特征聚类;最后,给出加权平均冗余度,选出每个特征簇中加权平均冗余度最大的特征构成最优特征子集。实验结果表明所提算法不仅可以有效提升特征选择的分类结果而且可以获得更好的聚类效果。 展开更多
关键词 特征选择 邻域互信息 k-MEANS 特征聚类 自适应k近邻 特征权重 加权k近邻密度
下载PDF
基于函数型k近邻分类模型的PM2.5研究
17
作者 刘壮 凌能祥 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第7期967-970,共4页
文章利用函数型数据分析方法,选取每天24 h的温度数据作为一条独立的曲线样本,并在该基础上建立函数型k近邻分类模型,用以对当天的24 h平均PM_(2.5)质量浓度进行分类判别。分别选取二次型核函数、指数型核函数、三角型核函数建立k近邻... 文章利用函数型数据分析方法,选取每天24 h的温度数据作为一条独立的曲线样本,并在该基础上建立函数型k近邻分类模型,用以对当天的24 h平均PM_(2.5)质量浓度进行分类判别。分别选取二次型核函数、指数型核函数、三角型核函数建立k近邻分类模型,并对其结果进行分析,通过对比发现,利用三角型核函数的k近邻分类模型对PM_(2.5)质量浓度进行分类的准确性最高且最稳健。采用NW(Nadaraya-Watson)核方法与k近邻分类模型进行比较分析,结果表明,k近邻分类模型能有效提高分类的准确率。 展开更多
关键词 函数型数据分类 k近邻 核函数 非参数统计
下载PDF
基于KNN算法的网络入侵检测技术开发 被引量:1
18
作者 吴晟懿 《信息与电脑》 2023年第5期67-69,共3页
传统算法在网络入侵检测方面存在部分问题,为了进一步提升检测水平,在网络信息攻击手段日益增多的背景下,提出了一种基于最邻近结点(K-NearestNeighbor,KNN)算法的网络入侵检测技术方法。该方法将粒子优化解决局部极值问题,以实现改善... 传统算法在网络入侵检测方面存在部分问题,为了进一步提升检测水平,在网络信息攻击手段日益增多的背景下,提出了一种基于最邻近结点(K-NearestNeighbor,KNN)算法的网络入侵检测技术方法。该方法将粒子优化解决局部极值问题,以实现改善网络入侵检测技术的目的。测试结果表明,基于KNN算法的网络入侵检测技术能够较好地识别攻击类型,其误检率显著优于Rabin-Karp、Boyer-Moore、Colussi这3种传统算法,验证了算法的有效性,能够较好地应用于网络入侵行为的预测,表现出良好的预测精度。 展开更多
关键词 knn算法 网络入侵检测 粒子群落 迭代
下载PDF
基于KNN和自适应的过采样方法
19
作者 张怀啸 陈卓 周必良 《信息与电脑》 2023年第3期93-95,共3页
针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN... 针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。 展开更多
关键词 不平衡数据分类 少数类合成过采样技术(SMOTE) k最邻近算法(knn) 自适应 过采样
下载PDF
基于CSI改进的WKNN室内定位方法 被引量:1
20
作者 李超升 毛永毅 《信息与电脑》 2023年第2期93-97,共5页
传统的加权K最近邻算法中以距离作为权值,随着数据维度的增加,计算距离与真实距离的误差越来越大。针对这一问题,提出了一种贝叶斯后验概率的加权K最近邻算法——贝叶斯后验概率(Bayes ian Posterior Probability-Weighted K-Nearest Ne... 传统的加权K最近邻算法中以距离作为权值,随着数据维度的增加,计算距离与真实距离的误差越来越大。针对这一问题,提出了一种贝叶斯后验概率的加权K最近邻算法——贝叶斯后验概率(Bayes ian Posterior Probability-Weighted K-Nearest Neighbor,BPP-WKNN)方法。首先用支持向量机算法分类选取测试点的近邻指纹点,其次计算测试点到每个近邻指纹点的贝叶斯后验概率,最后以贝叶斯后验概率的大小作为权值进行BPPWKNN算法定位。实验果表明:与基于曼哈顿距离的加权K最近邻算法和基于欧氏距离的加权K最近邻算法相比,改进后的BPP-WKNN定位算法的定位精确度和稳定性更高;利用支持向量机算法的稀疏性定位完成时间分别缩短了49%与42%。 展开更多
关键词 信道状态信息 室内定位 加权k近邻 支持向量机
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部