In this paper, we establish a fixed point theorem for set-valued mapping on a topological vector space without "local convexity". And we also establish some generalized Ky Fan's minimax inequalities for set-value v...In this paper, we establish a fixed point theorem for set-valued mapping on a topological vector space without "local convexity". And we also establish some generalized Ky Fan's minimax inequalities for set-value vector mappings, which are the generalization of some previous results.展开更多
We discuss Ky Fan's theorem and the variational inequality problem for discontinuous mappings f in a Banach space X. The main tools of analysis are the variational characterizations of the metric projection operat...We discuss Ky Fan's theorem and the variational inequality problem for discontinuous mappings f in a Banach space X. The main tools of analysis are the variational characterizations of the metric projection operator and the order-theoretic fixed point theory. Moreover, we derive some properties of the metric projection operator in Banach spaces. As applications of our best approximation theorems, three fixed point theorems for non-self maps are established and proved under some conditions. Our results are generalizations and improvements of various recent results obtained by many authors.展开更多
基金The NSF(9452902001003278,10452902001005845) of Guangdong Province
文摘In this paper, we establish a fixed point theorem for set-valued mapping on a topological vector space without "local convexity". And we also establish some generalized Ky Fan's minimax inequalities for set-value vector mappings, which are the generalization of some previous results.
基金supported by National Natural Science Foundation of China(Grant No.11371221)the Specialized Research Foundation for the Doctoral Program of Higher Education of China(Grant No.20123705110001)the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province
文摘We discuss Ky Fan's theorem and the variational inequality problem for discontinuous mappings f in a Banach space X. The main tools of analysis are the variational characterizations of the metric projection operator and the order-theoretic fixed point theory. Moreover, we derive some properties of the metric projection operator in Banach spaces. As applications of our best approximation theorems, three fixed point theorems for non-self maps are established and proved under some conditions. Our results are generalizations and improvements of various recent results obtained by many authors.