In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency est...In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency estimator is developed.Since the proposed method employs the weighted l_(1)-norm on the LP errors,it can be regarded as an extension of the l_(1)-generalized weighted linear predictor.Computer simulations are conducted in the environment of α-stable noise,indicating the superiority of the proposed algorithm,in terms of its robust to outliers and nearly optimal estimation performance.展开更多
This paper concerns with efficient projection onto the ordered weighted l_(1)norm ball,which is equivalent to the problem of finding projector onto the intersection of the monotone nonnegative cone and an affine subsp...This paper concerns with efficient projection onto the ordered weighted l_(1)norm ball,which is equivalent to the problem of finding projector onto the intersection of the monotone nonnegative cone and an affine subspace.Based on Lagrangian relaxation and secant approximation method,we propose an easily implementable yet efficient algorithm to solve the projection problem which is proved to terminate after a finite number of iterations.Furthermore,we design efficient implementations for our algorithm and compare it with a semismooth Newton(SSN)algorithm and a root-finding(Root-F)algorithm.Numerical results on a diversity of test problems show that our algorithm is superior than SSN and Root-F.展开更多
In this paper, the L_1-norm estimators and the random weighted statistic fora semiparametric regression model are constructed, the strong convergence rates of estimators areobtain under certain conditions, the strong ...In this paper, the L_1-norm estimators and the random weighted statistic fora semiparametric regression model are constructed, the strong convergence rates of estimators areobtain under certain conditions, the strong efficiency of the random weighting method is shown. Asimulation study is conducted to compare the L_1-norm estimator with the least square estimator interm of approximate accuracy, and simulation results are given for comparison between the randomweighting method and normal approximation method.展开更多
Consider the partly linear model K = X1& + go(Ti) + ei, where {(Ti, Xi)}T is a strictlystationary Sequence of random variable8, the ei’8 are i.i.d. random errorsl the K’s are realvalued responsest fo is a &v...Consider the partly linear model K = X1& + go(Ti) + ei, where {(Ti, Xi)}T is a strictlystationary Sequence of random variable8, the ei’8 are i.i.d. random errorsl the K’s are realvalued responsest fo is a &vector of parameters, X is a &vector of explanatory variables,Ti is another explanatory variable ranging over a nondegenerate compact interval. Bnd ona segmnt of observations (T1, Xi 1 Y1 ),’’’ f (Tn, X;, Yn), this article investigates the rates ofconvrgence of the M-estimators for Po and go obtained from the minimisation problemwhere H is a space of B-spline functions of order m + 1 and p(-) is a function chosen suitablyUnder some regularity conditions, it is shown that the estimator of go achieves the optimalglobal rate of convergence of estimators for nonparametric regression, and the estdriator offo is asymptotically normal. The M-estimators here include regression quantile estimators,Li-estimators, Lp-norm estimators, Huber’s type M-estimators and usual least squares estimators. Applications of the asymptotic theory to testing the hypothesis H0: A’β0 =β are alsodiscussed, where β is a given vector and A is a known d × do matrix with rank d0.展开更多
文摘In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency estimator is developed.Since the proposed method employs the weighted l_(1)-norm on the LP errors,it can be regarded as an extension of the l_(1)-generalized weighted linear predictor.Computer simulations are conducted in the environment of α-stable noise,indicating the superiority of the proposed algorithm,in terms of its robust to outliers and nearly optimal estimation performance.
基金supported by the National Natural Science Foundation of China(No.11871153)the Natural Science Foundation of Fujian Province of China(No.2019J01644).
文摘This paper concerns with efficient projection onto the ordered weighted l_(1)norm ball,which is equivalent to the problem of finding projector onto the intersection of the monotone nonnegative cone and an affine subspace.Based on Lagrangian relaxation and secant approximation method,we propose an easily implementable yet efficient algorithm to solve the projection problem which is proved to terminate after a finite number of iterations.Furthermore,we design efficient implementations for our algorithm and compare it with a semismooth Newton(SSN)algorithm and a root-finding(Root-F)algorithm.Numerical results on a diversity of test problems show that our algorithm is superior than SSN and Root-F.
基金Supported by the Natural Science Foundation of Beijing City of China (1042002)the Science and Technology Development Foundation of Education Committee of Beijing Citythe Special Expenditure of Excellent Person Education of Beijing(20041D0501515)
文摘In this paper, the L_1-norm estimators and the random weighted statistic fora semiparametric regression model are constructed, the strong convergence rates of estimators areobtain under certain conditions, the strong efficiency of the random weighting method is shown. Asimulation study is conducted to compare the L_1-norm estimator with the least square estimator interm of approximate accuracy, and simulation results are given for comparison between the randomweighting method and normal approximation method.
文摘Consider the partly linear model K = X1& + go(Ti) + ei, where {(Ti, Xi)}T is a strictlystationary Sequence of random variable8, the ei’8 are i.i.d. random errorsl the K’s are realvalued responsest fo is a &vector of parameters, X is a &vector of explanatory variables,Ti is another explanatory variable ranging over a nondegenerate compact interval. Bnd ona segmnt of observations (T1, Xi 1 Y1 ),’’’ f (Tn, X;, Yn), this article investigates the rates ofconvrgence of the M-estimators for Po and go obtained from the minimisation problemwhere H is a space of B-spline functions of order m + 1 and p(-) is a function chosen suitablyUnder some regularity conditions, it is shown that the estimator of go achieves the optimalglobal rate of convergence of estimators for nonparametric regression, and the estdriator offo is asymptotically normal. The M-estimators here include regression quantile estimators,Li-estimators, Lp-norm estimators, Huber’s type M-estimators and usual least squares estimators. Applications of the asymptotic theory to testing the hypothesis H0: A’β0 =β are alsodiscussed, where β is a given vector and A is a known d × do matrix with rank d0.