BACKGROUND The benefit of adjuvant chemotherapy(ACT)for patients with no evidence of disease after pulmonary metastasis resection(PM)from colorectal cancer(CRC)remains controversial.AIM To assess the efficacy of ACT i...BACKGROUND The benefit of adjuvant chemotherapy(ACT)for patients with no evidence of disease after pulmonary metastasis resection(PM)from colorectal cancer(CRC)remains controversial.AIM To assess the efficacy of ACT in patients after PM resection for CRC.METHODS This study included 96 patients who underwent pulmonary metastasectomy for CRC at a single institution between April 2008 and July 2023.The primary end-point was overall survival(OS);secondary endpoints included cancer-specific survival(CSS)and disease-free survival(DFS).An inverse probability of treat-ment-weighting(IPTW)analysis was conducted to address indication bias.Sur-vival outcomes compared using Kaplan-Meier curves,log-rank test,Cox regre-ssion and confirmed by propensity score-matching(PSM).RESULTS With a median follow-up of 27.5 months(range,18.3-50.4 months),the 5-year OS,CSS and DFS were 72.0%,74.4%and 51.3%,respectively.ACT had no significant effect on OS after PM resection from CRC[original cohort:P=0.08;IPTW:P=0.15].No differences were observed for CSS(P=0.12)and DFS(P=0.68)between the ACT and non-ACT groups.Multivariate analysis showed no association of ACT with better survival,while sublobar resection(HR=0.45;95%CI:0.20-1.00,P=0.049)and longer disease-free interval(HR=0.45;95%CI:0.20-0.98,P=0.044)were associated with improved survival.CONCLUSION ACT does not improve survival after PM resection for CRC.Further well-designed randomized controlled trials are needed to determine the optimal ACT regimen and duration.展开更多
We proposed </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">a new extension of three</span><span style="font-family:Verda...We proposed </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">a new extension of three</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">parametric distribution” called the inverse power two-parameter weighted Lindley (IPWL) distribution capable of modeling a upside-down bathtub hazard rate function. This distribution is studied to get basic structural properties such as reliability measures, moments, inverse moments and its related measures. Simulation studies </span><span style="font-family:Verdana;">are </span><span style="font-family:Verdana;">done to present the performance and behavior of maximum likelihood estimates of the IPWL distribution parameters. Finally, we perform goodness of fit measures and test statistics using a real data set to show the performance of the new distribution.展开更多
The weighted generalized inverses have several important applications in researching the singular matrices,regularization methods for ill-posed problems, optimization problems and statis- tics problems.In this paper w...The weighted generalized inverses have several important applications in researching the singular matrices,regularization methods for ill-posed problems, optimization problems and statis- tics problems.In this paper we further research inverse order rules of weighted generalizde inverse. From the view point of munerical algebra, the different methods we used in inverse order rules pro- vide beneficial means for theory and computing of generalized inverse matrices.展开更多
High frequency financial data is characterized by non-normality: asymmetric, leptokurtic and fat-tailed behaviour. The normal distribution is therefore inadequate in capturing these characteristics. To this end, vario...High frequency financial data is characterized by non-normality: asymmetric, leptokurtic and fat-tailed behaviour. The normal distribution is therefore inadequate in capturing these characteristics. To this end, various flexible distributions have been proposed. It is well known that mixture distributions produce flexible models with good statistical and probabilistic properties. In this work, a finite mixture of two special cases of Generalized Inverse Gaussian distribution has been constructed. Using this finite mixture as a mixing distribution to the Normal Variance Mean Mixture we get a Normal Weighted Inverse Gaussian (NWIG) distribution. The second objective, therefore, is to construct and obtain properties of the NWIG distribution. The maximum likelihood parameter estimates of the proposed model are estimated via EM algorithm and three data sets are used for application. The result shows that the proposed model is flexible and fits the data well.展开更多
Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and ideal...Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.展开更多
This paper outlines the application of the multi-layer perceptron artificial neural network (ANN), ordinary kriging (OK), and inverse distance weighting (IDW) models in the estimation of local scour depth around bridg...This paper outlines the application of the multi-layer perceptron artificial neural network (ANN), ordinary kriging (OK), and inverse distance weighting (IDW) models in the estimation of local scour depth around bridge piers. As part of this study, bridge piers were installed with bed sills at the bed of an experimental flume. Experimental tests were conducted under different flow conditions and varying distances between bridge pier and bed sill. The ANN, OK and IDW models were applied to the experimental data and it was shown that the artificial neural network model predicts local scour depth more accurately than the kriging and inverse distance weighting models. It was found that the ANN with two hidden layers was the optimum model to predict local scour depth. The results from the sixth test case showed that the ANN with one hidden layer and 17 hidden nodes was the best model to predict local scour depth. Whereas the results from the fifth test case found that the ANN with three hidden layers was the best model to predict local scour depth.展开更多
The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far ...The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.展开更多
Using Moore-Penrose inverse theory, a set of formulations for calculating the static responses of a changed finite element structure are given in this paper. Using these formulations by structural analysis may elimina...Using Moore-Penrose inverse theory, a set of formulations for calculating the static responses of a changed finite element structure are given in this paper. Using these formulations by structural analysis may eliminate the need of assembling the stiffness matrix and solving a set of simultaneous equations.展开更多
In this work,we consider the inverse nodal problem for the Sturm-Liouville problem with a weight and the jump condition at the middle point.It is shown that the dense nodes of the eigenfunctions can uniquely determine...In this work,we consider the inverse nodal problem for the Sturm-Liouville problem with a weight and the jump condition at the middle point.It is shown that the dense nodes of the eigenfunctions can uniquely determine the potential on the whole interval and some parameters.展开更多
In gravity gradient inversion,to choose an appropriate component combination is very important,that needs to understand the function of each component of gravity gradient in the inversion.In this paper,based on the pr...In gravity gradient inversion,to choose an appropriate component combination is very important,that needs to understand the function of each component of gravity gradient in the inversion.In this paper,based on the previous research on the characteristics of gravity gradient components,we propose a reweighted inversion method to evaluate the influence of single gravity gradient component on the inversion resolution The proposed method only adopts the misfit function of the regularized equation and introduce a depth weighting function to overcome skin effect produced in gravity gradient inversion.A comparison between different inversion results was undertaken to verify the influence of the depth weighting function on the inversion result resolution.To avoid the premise of introducing prior information,we select the depth weighting function based on the sensitivity matrix.The inversion results using the single-prism model and the complex model show that the influence of different components on the resolution of inversion results is different in different directions,however,the inversion results based on two kind of models with adding different levels of random noise are basically consistent with the results of inversion without noises.Finally,the method was applied to real data from the Vinton salt dome,Louisiana,USA.展开更多
It becomes a key technology to measure the concentration of the vehicle exhaust components with the absorption spectra. But because of the overlap of gas absorption bands, how to separate the absorption information of...It becomes a key technology to measure the concentration of the vehicle exhaust components with the absorption spectra. But because of the overlap of gas absorption bands, how to separate the absorption information of each component gas from the mixed absorption spectra has become the key point to restrict the precision of the optical detection method. In this paper, the ex-perimental platform for the absorption spectrum of vehicle exhaust components has been established. Based on the ultraviolet absorption spectra measured with the platform of exhaust gas NO & NO2, the concentration regression model for the two components has been established with weighted partial least squares regression (WPLS). Finally the each spectral characteristic information of NO & NO2 gas has been separated and the concentration of each corresponding component has been reversed successfully.展开更多
The diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) is extremely difficult. Diffusion-weighted imaging has been shown to be the most sensitive technique for the detection of signal alterations in sCJD patient...The diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) is extremely difficult. Diffusion-weighted imaging has been shown to be the most sensitive technique for the detection of signal alterations in sCJD patients. The present study analyzed the diagnostic value of diffusion-weighted imaging and fluid-attenuated inversion recovery sequence in the early stage of sCJD in one female patient and correlated the clinical symptoms during disease course and magnetic resonance manifestations. Thalamic and basal ganglia hyperintensities were observed on magnetic resonance images in a very early stage, i.e., when the clinical typical manifestations of the disease were not present. With the progression of the disease, cortical and basal ganglia hyperintensities were observed on magnetic resonance images, showing an obvious cerebral atrophy. These findings suggest that diffusion-weighted imaging and fluid-attenuated inversion recovery sequence are helpful in diagnosing sCJD.展开更多
In this paper,a novel precoding scheme based on the Gauss-Seidel(GS)method is proposed for downlink massive multiple-input multiple-output(MIMO)systems.The GS method iteratively approximates the matrix inversion and r...In this paper,a novel precoding scheme based on the Gauss-Seidel(GS)method is proposed for downlink massive multiple-input multiple-output(MIMO)systems.The GS method iteratively approximates the matrix inversion and reduces the overall complexity of the precoding process.In addition,the GS method shows a fast convergence rate to the Zero-forcing(ZF)method that requires an exact invertible matrix.However,to satisfy demanded error performance and converge to the error performance of the ZF method in the practical condition such as spatially correlated channels,more iterations are necessary for the GS method and increase the overall complexity.For efficient approximation with fewer iterations,this paper proposes a weighted GS(WGS)method to improve the approximation accuracy of the GS method.The optimal weights that accelerate the convergence rate by improved accuracy are computed by the least square(LS)method.After the computation of weights,the different weights are applied for each iteration of the GS method.In addition,an efficient method of weight computation is proposed to reduce the complexity of the LS method.The simulation results show that bit error rate(BER)performance for the proposed scheme with fewer iterations is better than the GS method in spatially correlated channels.展开更多
An ill-posed inverse problem in quantitative susceptibility mapping (QSM) is usually solved using a regularization and optimization solver, which is time consuming considering the three-dimensional volume data. Howe...An ill-posed inverse problem in quantitative susceptibility mapping (QSM) is usually solved using a regularization and optimization solver, which is time consuming considering the three-dimensional volume data. However, in clinical diagnosis, it is necessary to reconstruct a susceptibility map efficiently with an appropriate method. Here, a modified QSM reconstruction method called weighted total variation using split Bregman (WTVSB) is proposed. It reconstructs the susceptibility map with fast computational speed and effective artifact suppression by incorporating noise-suppressed data weighting with split Bregman iteration. The noise-suppressed data weighting is determined using the Laplacian of the calculated local field, which can prevent the noise and errors in field maps from spreading into the susceptibility inversion. The split Bregman iteration accelerates the solution of the Ll-regularized reconstruction model by utilizing a preconditioned conjugate gradient solver. In an experiment, the proposed reconstruction method is compared with truncated k-space division (TKD), morphology enabled dipole inversion (MEDI), total variation using the split Bregman (TVSB) method for numerical simulation, phantom and in vivo human brain data evaluated by root mean square error and mean structure similarity. Experimental results demonstrate that our proposed method can achieve better balance between accuracy and efficiency of QSM reconstruction than conventional methods, and thus facilitating clinical applications of QSM.展开更多
To solve problems in small-scale and complex structural traps,the inverse Gaussian-beam stack-imaging method is commonly used to process crosswell seismic wave reflection data.Owing to limited coverage,the imaging qua...To solve problems in small-scale and complex structural traps,the inverse Gaussian-beam stack-imaging method is commonly used to process crosswell seismic wave reflection data.Owing to limited coverage,the imaging quality of conventional ray-based crosswell seismic stack imaging is poor in complex areas;moreover,the imaging range is small and with sever interference because of the arc phenomenon in seismic migration.Thus,we propose the inverse Gaussian-beam stack imaging,in which Gaussian weight functions of rays contributing to the geophones energy are calculated and used to decompose the seismic wavefield.This effectively enlarges the coverage of the reflection points and improves the transverse resolution.Compared with the traditional VSP–CDP stack imaging,the proposed methods extends the imaging range,yields higher horizontal resolution,and is more adaptable to complex geological structures.The method is applied to model a complex structure in the K-area.The results suggest that the wave group of the target layer is clearer,the resolution is higher,and the main frequency of the crosswell seismic section is higher than that in surface seismic exploration The effectiveness and robustness of the method are verified by theoretical model and practical data.展开更多
There are lots of low wavenumber noises in the gradients of time domain full waveform inversion(FWI),which can seriously reduce the accuracy and convergence speed of FWI.Thus,we introduce an angle-dependent weighting ...There are lots of low wavenumber noises in the gradients of time domain full waveform inversion(FWI),which can seriously reduce the accuracy and convergence speed of FWI.Thus,we introduce an angle-dependent weighting factor to precondition the gradients so as to suppress the low wavenumber noises when the multi-scale FWI is implemented in the high frequency.Model experiments show that the FWI based on the gradient preconditioning with an angle-dependent weighting factor has faster convergence speed and higher inversion accuracy than the conventional FWI.The tests on real marine seismic data show that this method can adapt to the FWI of field data,and provide high-precision velocity models for the actual data processing.展开更多
In this paper, necessary and sufficient conditions are obtained for unilateral weighted shifts to be near subnormal. As an application of the main results, many answers to the Hilbert space problem 160 are presented a...In this paper, necessary and sufficient conditions are obtained for unilateral weighted shifts to be near subnormal. As an application of the main results, many answers to the Hilbert space problem 160 are presented at the end of the paper.展开更多
Compared with traditional gravity measurement data,gravity gradient tensor data contain more high frequency information,which can be used to understand the earth's interior structure,mineral resources distribution...Compared with traditional gravity measurement data,gravity gradient tensor data contain more high frequency information,which can be used to understand the earth's interior structure,mineral resources distribution etc. In this study,the authors present an algorithm for inverting gravity gradiometer data to recover the three-dimensional( 3-D) distributions of density. Spatial gradient weighting was used to constrain the extent of the body horizontally and vertically. A more accurate inversion result can be obtained by combining the prior information into the weighting function and applying it in inversion. This method was tested on synthetic models and the inverted results showed that the resolution was significantly improved. Moreover,the algorithm was applied to the inversion of empirical data from a salt dome located in Texas,USA,which demonstrated the validity of the proposed method.展开更多
基金Supported by the National Project for Clinical Key Specialty Development.
文摘BACKGROUND The benefit of adjuvant chemotherapy(ACT)for patients with no evidence of disease after pulmonary metastasis resection(PM)from colorectal cancer(CRC)remains controversial.AIM To assess the efficacy of ACT in patients after PM resection for CRC.METHODS This study included 96 patients who underwent pulmonary metastasectomy for CRC at a single institution between April 2008 and July 2023.The primary end-point was overall survival(OS);secondary endpoints included cancer-specific survival(CSS)and disease-free survival(DFS).An inverse probability of treat-ment-weighting(IPTW)analysis was conducted to address indication bias.Sur-vival outcomes compared using Kaplan-Meier curves,log-rank test,Cox regre-ssion and confirmed by propensity score-matching(PSM).RESULTS With a median follow-up of 27.5 months(range,18.3-50.4 months),the 5-year OS,CSS and DFS were 72.0%,74.4%and 51.3%,respectively.ACT had no significant effect on OS after PM resection from CRC[original cohort:P=0.08;IPTW:P=0.15].No differences were observed for CSS(P=0.12)and DFS(P=0.68)between the ACT and non-ACT groups.Multivariate analysis showed no association of ACT with better survival,while sublobar resection(HR=0.45;95%CI:0.20-1.00,P=0.049)and longer disease-free interval(HR=0.45;95%CI:0.20-0.98,P=0.044)were associated with improved survival.CONCLUSION ACT does not improve survival after PM resection for CRC.Further well-designed randomized controlled trials are needed to determine the optimal ACT regimen and duration.
文摘We proposed </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">a new extension of three</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">parametric distribution” called the inverse power two-parameter weighted Lindley (IPWL) distribution capable of modeling a upside-down bathtub hazard rate function. This distribution is studied to get basic structural properties such as reliability measures, moments, inverse moments and its related measures. Simulation studies </span><span style="font-family:Verdana;">are </span><span style="font-family:Verdana;">done to present the performance and behavior of maximum likelihood estimates of the IPWL distribution parameters. Finally, we perform goodness of fit measures and test statistics using a real data set to show the performance of the new distribution.
文摘The weighted generalized inverses have several important applications in researching the singular matrices,regularization methods for ill-posed problems, optimization problems and statis- tics problems.In this paper we further research inverse order rules of weighted generalizde inverse. From the view point of munerical algebra, the different methods we used in inverse order rules pro- vide beneficial means for theory and computing of generalized inverse matrices.
文摘High frequency financial data is characterized by non-normality: asymmetric, leptokurtic and fat-tailed behaviour. The normal distribution is therefore inadequate in capturing these characteristics. To this end, various flexible distributions have been proposed. It is well known that mixture distributions produce flexible models with good statistical and probabilistic properties. In this work, a finite mixture of two special cases of Generalized Inverse Gaussian distribution has been constructed. Using this finite mixture as a mixing distribution to the Normal Variance Mean Mixture we get a Normal Weighted Inverse Gaussian (NWIG) distribution. The second objective, therefore, is to construct and obtain properties of the NWIG distribution. The maximum likelihood parameter estimates of the proposed model are estimated via EM algorithm and three data sets are used for application. The result shows that the proposed model is flexible and fits the data well.
基金supported by the National Science and Technology Major Project(No.2011 ZX05007-006)the 973 Program of China(No.2013CB228604)the Major Project of Petrochina(No.2014B-0610)
文摘Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.
文摘This paper outlines the application of the multi-layer perceptron artificial neural network (ANN), ordinary kriging (OK), and inverse distance weighting (IDW) models in the estimation of local scour depth around bridge piers. As part of this study, bridge piers were installed with bed sills at the bed of an experimental flume. Experimental tests were conducted under different flow conditions and varying distances between bridge pier and bed sill. The ANN, OK and IDW models were applied to the experimental data and it was shown that the artificial neural network model predicts local scour depth more accurately than the kriging and inverse distance weighting models. It was found that the ANN with two hidden layers was the optimum model to predict local scour depth. The results from the sixth test case showed that the ANN with one hidden layer and 17 hidden nodes was the best model to predict local scour depth. Whereas the results from the fifth test case found that the ANN with three hidden layers was the best model to predict local scour depth.
基金jointly supported by Young Scientists Cultivation Fund Project of Harbin Engineering University(79000013/003)the Mount Taishan Industrial Leading Talent Project+1 种基金the Great and Special Project under Grant KJGG-2022-0104 of CNOOC Limitedthe National Natural Science Foundation of China(42006064,42106070,42074138)。
文摘The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.
文摘Using Moore-Penrose inverse theory, a set of formulations for calculating the static responses of a changed finite element structure are given in this paper. Using these formulations by structural analysis may eliminate the need of assembling the stiffness matrix and solving a set of simultaneous equations.
基金The research work was supported in part by the National Natural Science Foundation of China(11611530682 and 11871031).
文摘In this work,we consider the inverse nodal problem for the Sturm-Liouville problem with a weight and the jump condition at the middle point.It is shown that the dense nodes of the eigenfunctions can uniquely determine the potential on the whole interval and some parameters.
基金supported by the National Key R&D Program of China(Nos.2016YFC0303002 and 2017YFC0601701)China Geological Survey Program(No.DD20191007)
文摘In gravity gradient inversion,to choose an appropriate component combination is very important,that needs to understand the function of each component of gravity gradient in the inversion.In this paper,based on the previous research on the characteristics of gravity gradient components,we propose a reweighted inversion method to evaluate the influence of single gravity gradient component on the inversion resolution The proposed method only adopts the misfit function of the regularized equation and introduce a depth weighting function to overcome skin effect produced in gravity gradient inversion.A comparison between different inversion results was undertaken to verify the influence of the depth weighting function on the inversion result resolution.To avoid the premise of introducing prior information,we select the depth weighting function based on the sensitivity matrix.The inversion results using the single-prism model and the complex model show that the influence of different components on the resolution of inversion results is different in different directions,however,the inversion results based on two kind of models with adding different levels of random noise are basically consistent with the results of inversion without noises.Finally,the method was applied to real data from the Vinton salt dome,Louisiana,USA.
文摘It becomes a key technology to measure the concentration of the vehicle exhaust components with the absorption spectra. But because of the overlap of gas absorption bands, how to separate the absorption information of each component gas from the mixed absorption spectra has become the key point to restrict the precision of the optical detection method. In this paper, the ex-perimental platform for the absorption spectrum of vehicle exhaust components has been established. Based on the ultraviolet absorption spectra measured with the platform of exhaust gas NO & NO2, the concentration regression model for the two components has been established with weighted partial least squares regression (WPLS). Finally the each spectral characteristic information of NO & NO2 gas has been separated and the concentration of each corresponding component has been reversed successfully.
文摘The diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) is extremely difficult. Diffusion-weighted imaging has been shown to be the most sensitive technique for the detection of signal alterations in sCJD patients. The present study analyzed the diagnostic value of diffusion-weighted imaging and fluid-attenuated inversion recovery sequence in the early stage of sCJD in one female patient and correlated the clinical symptoms during disease course and magnetic resonance manifestations. Thalamic and basal ganglia hyperintensities were observed on magnetic resonance images in a very early stage, i.e., when the clinical typical manifestations of the disease were not present. With the progression of the disease, cortical and basal ganglia hyperintensities were observed on magnetic resonance images, showing an obvious cerebral atrophy. These findings suggest that diffusion-weighted imaging and fluid-attenuated inversion recovery sequence are helpful in diagnosing sCJD.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2019-2018-0-01423)supervised by the IITP(Institute for Information&communications Technology Promotion)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2020R1A6A1A03038540).
文摘In this paper,a novel precoding scheme based on the Gauss-Seidel(GS)method is proposed for downlink massive multiple-input multiple-output(MIMO)systems.The GS method iteratively approximates the matrix inversion and reduces the overall complexity of the precoding process.In addition,the GS method shows a fast convergence rate to the Zero-forcing(ZF)method that requires an exact invertible matrix.However,to satisfy demanded error performance and converge to the error performance of the ZF method in the practical condition such as spatially correlated channels,more iterations are necessary for the GS method and increase the overall complexity.For efficient approximation with fewer iterations,this paper proposes a weighted GS(WGS)method to improve the approximation accuracy of the GS method.The optimal weights that accelerate the convergence rate by improved accuracy are computed by the least square(LS)method.After the computation of weights,the different weights are applied for each iteration of the GS method.In addition,an efficient method of weight computation is proposed to reduce the complexity of the LS method.The simulation results show that bit error rate(BER)performance for the proposed scheme with fewer iterations is better than the GS method in spatially correlated channels.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474236,81671674,and 11775184)the Science and Technology Project of Fujian Province,China(Grant No.2016Y0078)
文摘An ill-posed inverse problem in quantitative susceptibility mapping (QSM) is usually solved using a regularization and optimization solver, which is time consuming considering the three-dimensional volume data. However, in clinical diagnosis, it is necessary to reconstruct a susceptibility map efficiently with an appropriate method. Here, a modified QSM reconstruction method called weighted total variation using split Bregman (WTVSB) is proposed. It reconstructs the susceptibility map with fast computational speed and effective artifact suppression by incorporating noise-suppressed data weighting with split Bregman iteration. The noise-suppressed data weighting is determined using the Laplacian of the calculated local field, which can prevent the noise and errors in field maps from spreading into the susceptibility inversion. The split Bregman iteration accelerates the solution of the Ll-regularized reconstruction model by utilizing a preconditioned conjugate gradient solver. In an experiment, the proposed reconstruction method is compared with truncated k-space division (TKD), morphology enabled dipole inversion (MEDI), total variation using the split Bregman (TVSB) method for numerical simulation, phantom and in vivo human brain data evaluated by root mean square error and mean structure similarity. Experimental results demonstrate that our proposed method can achieve better balance between accuracy and efficiency of QSM reconstruction than conventional methods, and thus facilitating clinical applications of QSM.
基金sponsored by the National Key R&D Plan Project(Grant No.2016YFC0303900)Natural Science Foundation of China(Grant No.41374145)
文摘To solve problems in small-scale and complex structural traps,the inverse Gaussian-beam stack-imaging method is commonly used to process crosswell seismic wave reflection data.Owing to limited coverage,the imaging quality of conventional ray-based crosswell seismic stack imaging is poor in complex areas;moreover,the imaging range is small and with sever interference because of the arc phenomenon in seismic migration.Thus,we propose the inverse Gaussian-beam stack imaging,in which Gaussian weight functions of rays contributing to the geophones energy are calculated and used to decompose the seismic wavefield.This effectively enlarges the coverage of the reflection points and improves the transverse resolution.Compared with the traditional VSP–CDP stack imaging,the proposed methods extends the imaging range,yields higher horizontal resolution,and is more adaptable to complex geological structures.The method is applied to model a complex structure in the K-area.The results suggest that the wave group of the target layer is clearer,the resolution is higher,and the main frequency of the crosswell seismic section is higher than that in surface seismic exploration The effectiveness and robustness of the method are verified by theoretical model and practical data.
基金funded by the National Natural Science Foundation of China(No.42074138)the Wenhai Program of the S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2021WHZZB0700)the Major Scientific and Technological Innovation Project of Shandong Province(No.2019JZZY010803).
文摘There are lots of low wavenumber noises in the gradients of time domain full waveform inversion(FWI),which can seriously reduce the accuracy and convergence speed of FWI.Thus,we introduce an angle-dependent weighting factor to precondition the gradients so as to suppress the low wavenumber noises when the multi-scale FWI is implemented in the high frequency.Model experiments show that the FWI based on the gradient preconditioning with an angle-dependent weighting factor has faster convergence speed and higher inversion accuracy than the conventional FWI.The tests on real marine seismic data show that this method can adapt to the FWI of field data,and provide high-precision velocity models for the actual data processing.
文摘In this paper, necessary and sufficient conditions are obtained for unilateral weighted shifts to be near subnormal. As an application of the main results, many answers to the Hilbert space problem 160 are presented at the end of the paper.
基金Supported by Project of Natural Science Fund of Jilin Province(No.20180101312JC)
文摘Compared with traditional gravity measurement data,gravity gradient tensor data contain more high frequency information,which can be used to understand the earth's interior structure,mineral resources distribution etc. In this study,the authors present an algorithm for inverting gravity gradiometer data to recover the three-dimensional( 3-D) distributions of density. Spatial gradient weighting was used to constrain the extent of the body horizontally and vertically. A more accurate inversion result can be obtained by combining the prior information into the weighting function and applying it in inversion. This method was tested on synthetic models and the inverted results showed that the resolution was significantly improved. Moreover,the algorithm was applied to the inversion of empirical data from a salt dome located in Texas,USA,which demonstrated the validity of the proposed method.