We address the 1-line minimum Steiner tree of line segments(1L-MStT-LS)problem.Specifically,given a set S of n disjoint line segments in R^(2),we are asked to find the location of a line l and a set E_(l) of necessary...We address the 1-line minimum Steiner tree of line segments(1L-MStT-LS)problem.Specifically,given a set S of n disjoint line segments in R^(2),we are asked to find the location of a line l and a set E_(l) of necessary line segments(i.e.,edges)such that a graph consisting of all line segments in S ∪ E_(l) plus this line l,denoted by T_(l)=(S,l,E_(l)),becomes a Steiner tree,the objective is to minimize total length of edges in E_(l) among all such Steiner trees.Similarly,we are asked to find a set E_(0) of necessary edges such that a graph consisting of all line segments in S ∪ E_(0),denoted by T_(S)=(S,E_(0)),becomes a Steiner tree,the objective is to minimize total length of edges in E_(0) among all such Steiner trees,we refer to this new problem as the minimum Steiner tree of line segments(MStT-LS)problem.In addition,when two endpoints of each edge in Eo need to be located on two different line segments in S,respectively,we refer to that problem as the minimum spanning tree of line segments(MST-LS)problem.We obtain three main results:(1)Using technique of Voronoi diagram of line segments,we design an exact algorithm in time O(n log n)to solve the MST-LS problem;(2)we show that the algorithm designed in(1)is a 1.214-approximation algorithm to solve the MStT-LS problem;(3)using the combination of the algorithm designed in(1)as a subroutine for many times,a technique of finding linear facility location and a key lemma proved by techniques of computational geometry,we present a 1.214-approximation algorithm in time O(n^(3) log n)to solve the 1L-MStT-LS problem.展开更多
Spanning tree problems with specialized constraints can be difficult to solve in real-world scenarios,often requiring intricate algorithmic design and exponential time.Recently,there has been growing interest in end-t...Spanning tree problems with specialized constraints can be difficult to solve in real-world scenarios,often requiring intricate algorithmic design and exponential time.Recently,there has been growing interest in end-to-end deep neural networks for solving routing problems.However,such methods typically produce sequences of vertices,which make it difficult to apply them to general combinatorial optimization problems where the solution set consists of edges,as in various spanning tree problems.In this paper,we propose NeuroPrim,a novel framework for solving various spanning tree problems by defining a Markov decision process for general combinatorial optimization problems on graphs.Our approach reduces the action and state space using Prim's algorithm and trains the resulting model using REINFORCE.We apply our framework to three difficult problems on the Euclidean space:the degree-constrained minimum spanning tree problem,the minimum routing cost spanning tree problem and the Steiner tree problem in graphs.Experimental results on literature instances demonstrate that our model outperforms strong heuristics and achieves small optimality gaps of up to 250 vertices.Additionally,we find that our model has strong generalization ability with no significant degradation observed on problem instances as large as 1,000.Our results suggest that our framework can be effective for solving a wide range of combinatorial optimization problems beyond spanning tree problems.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11861075 and 12101593)Project for Innovation Team(Cultivation)of Yunnan Province(No.202005AE160006)+2 种基金Key Project of Yunnan Provincial Science and Technology Department and Yunnan University(No.2018FY001014)Program for Innovative Research Team(in Science and Technology)in Universities of Yunnan Province(No.C176240111009)Jian-Ping Li is also supported by Project of Yunling Scholars Training of Yunnan Province.Su-Ding Liu is also supported by the Graduate Research and Innovation Project of Yunnan University(No.2020Z66).
文摘We address the 1-line minimum Steiner tree of line segments(1L-MStT-LS)problem.Specifically,given a set S of n disjoint line segments in R^(2),we are asked to find the location of a line l and a set E_(l) of necessary line segments(i.e.,edges)such that a graph consisting of all line segments in S ∪ E_(l) plus this line l,denoted by T_(l)=(S,l,E_(l)),becomes a Steiner tree,the objective is to minimize total length of edges in E_(l) among all such Steiner trees.Similarly,we are asked to find a set E_(0) of necessary edges such that a graph consisting of all line segments in S ∪ E_(0),denoted by T_(S)=(S,E_(0)),becomes a Steiner tree,the objective is to minimize total length of edges in E_(0) among all such Steiner trees,we refer to this new problem as the minimum Steiner tree of line segments(MStT-LS)problem.In addition,when two endpoints of each edge in Eo need to be located on two different line segments in S,respectively,we refer to that problem as the minimum spanning tree of line segments(MST-LS)problem.We obtain three main results:(1)Using technique of Voronoi diagram of line segments,we design an exact algorithm in time O(n log n)to solve the MST-LS problem;(2)we show that the algorithm designed in(1)is a 1.214-approximation algorithm to solve the MStT-LS problem;(3)using the combination of the algorithm designed in(1)as a subroutine for many times,a technique of finding linear facility location and a key lemma proved by techniques of computational geometry,we present a 1.214-approximation algorithm in time O(n^(3) log n)to solve the 1L-MStT-LS problem.
基金supported by National Key R&D Program of China(Grant No.2021YFA1000403)National Natural Science Foundation of China(Grant No.11991022)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA27000000)the Fundamental Research Funds for the Central Universities。
文摘Spanning tree problems with specialized constraints can be difficult to solve in real-world scenarios,often requiring intricate algorithmic design and exponential time.Recently,there has been growing interest in end-to-end deep neural networks for solving routing problems.However,such methods typically produce sequences of vertices,which make it difficult to apply them to general combinatorial optimization problems where the solution set consists of edges,as in various spanning tree problems.In this paper,we propose NeuroPrim,a novel framework for solving various spanning tree problems by defining a Markov decision process for general combinatorial optimization problems on graphs.Our approach reduces the action and state space using Prim's algorithm and trains the resulting model using REINFORCE.We apply our framework to three difficult problems on the Euclidean space:the degree-constrained minimum spanning tree problem,the minimum routing cost spanning tree problem and the Steiner tree problem in graphs.Experimental results on literature instances demonstrate that our model outperforms strong heuristics and achieves small optimality gaps of up to 250 vertices.Additionally,we find that our model has strong generalization ability with no significant degradation observed on problem instances as large as 1,000.Our results suggest that our framework can be effective for solving a wide range of combinatorial optimization problems beyond spanning tree problems.