Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved s...Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.展开更多
An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the ...An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes.展开更多
A hybrid decoding algorithm is proposed for nonbinary low-density parity-check (LDPC) codes, which combines the weighted symbol-flipping (WSF) algorithm with the fast Fourier trans- form q-ary sum-product algorit...A hybrid decoding algorithm is proposed for nonbinary low-density parity-check (LDPC) codes, which combines the weighted symbol-flipping (WSF) algorithm with the fast Fourier trans- form q-ary sum-product algorithm (FFT-QSPA). The flipped position and value are determined by the symbol flipping metric and the received bit values in the first stage WSF algorithm. If the low- eomplexity WSF algorithm is failed, the second stage FFT-QSPA is activated as a switching strategy. Simulation results show that the proposed hybrid algorithm greatly reduces the computational complexity with the performance close to that of FFT-QSPA.展开更多
This paper proposes a novel mapping scheme for bit-interleaved coded modulation with iterative decoding(BICM-ID).The symbol mapping is composed of two QPSK with different radiuses and phases,called cross equalization-...This paper proposes a novel mapping scheme for bit-interleaved coded modulation with iterative decoding(BICM-ID).The symbol mapping is composed of two QPSK with different radiuses and phases,called cross equalization-8PSK-quasi-semi set partitioning(CE-8PSK-Quasi-SSP).Providing the same average power,the proposed scheme can increase the minimum squared Euclidean distance(MSED)and then improve the receiving performance of BICM-ID compared with conventional symbol mapping schemes.Simultaneously,a modified iteration decoding algorithm is proposed in this paper.In the process of iteration decoding,different proportion of the extrinsic information to the systematic observations results in distinct decoding performance.At high SNR(4~9dB),the observation information plays a more important role than the extrinsic information.Simulation results show that the proportion set at 1.2 is more suitable for the novel mapping in BICM-ID.When the BER is 10^(-4),more than 0.9dB coding gain over Rayleigh channels can be achieved for the improved mapping and decoding scheme.展开更多
文章介绍一种结合权重学习的Turbo解码器,同时集成了传统的Turbo解码方法Max-Log-MAP,和传统的Max-Log-MAP方法具有相同的复杂度。基于传统的解码方法结合神经网络计算更为精确的权重,可实现误码率更低的解码结果,和传统解码方式Max-Log...文章介绍一种结合权重学习的Turbo解码器,同时集成了传统的Turbo解码方法Max-Log-MAP,和传统的Max-Log-MAP方法具有相同的复杂度。基于传统的解码方法结合神经网络计算更为精确的权重,可实现误码率更低的解码结果,和传统解码方式Max-Log-MAP进行对比,在加性高斯白噪声(Additive White Gaussian Noise,AWGN)信道上具有更好的解码效果。通过仿真结果证明,该网络的解码误码率比传统的解码方法更小。展开更多
该文提出一种改进的低密度奇偶校验(Low Density Parity-Check,LDPC)码的加权比特翻转译码算法。该算法引入了变量节点的更新规则,对翻转函数的计算更加精确,同时能够有效弱化环路振荡引起的误码。仿真结果表明,与已有的基于幅度和的加...该文提出一种改进的低密度奇偶校验(Low Density Parity-Check,LDPC)码的加权比特翻转译码算法。该算法引入了变量节点的更新规则,对翻转函数的计算更加精确,同时能够有效弱化环路振荡引起的误码。仿真结果表明,与已有的基于幅度和的加权比特翻转译码算法(SMWBF)相比,在加性高斯白噪声信道下,该文算法在复杂度增加很小的情况下获得了误码率性能的有效提升。展开更多
基金funded by the Key Project of NSFC-Guangdong Province Joint Program(Grant No.U2001204)the National Natural Science Foundation of China(Grant Nos.61873290 and 61972431)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.202002030470)the Funding Project of Featured Major of Guangzhou Xinhua University(2021TZ002).
文摘Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.
基金The National High Technology Research and Development Program of China (863Program) ( No2009AA01Z235,2006AA01Z263)the Research Fund of the National Mobile Communications Research Laboratory of Southeast University(No2008A10)
文摘An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes.
基金Supported by the National High Technology Research and Development Programme of China(No.2009AAJ128,2009AAJ208,2010AA7010422)
文摘A hybrid decoding algorithm is proposed for nonbinary low-density parity-check (LDPC) codes, which combines the weighted symbol-flipping (WSF) algorithm with the fast Fourier trans- form q-ary sum-product algorithm (FFT-QSPA). The flipped position and value are determined by the symbol flipping metric and the received bit values in the first stage WSF algorithm. If the low- eomplexity WSF algorithm is failed, the second stage FFT-QSPA is activated as a switching strategy. Simulation results show that the proposed hybrid algorithm greatly reduces the computational complexity with the performance close to that of FFT-QSPA.
基金Supported by the Key Project of Chinese Ministry of Education(No.106042)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(2007[24])
文摘This paper proposes a novel mapping scheme for bit-interleaved coded modulation with iterative decoding(BICM-ID).The symbol mapping is composed of two QPSK with different radiuses and phases,called cross equalization-8PSK-quasi-semi set partitioning(CE-8PSK-Quasi-SSP).Providing the same average power,the proposed scheme can increase the minimum squared Euclidean distance(MSED)and then improve the receiving performance of BICM-ID compared with conventional symbol mapping schemes.Simultaneously,a modified iteration decoding algorithm is proposed in this paper.In the process of iteration decoding,different proportion of the extrinsic information to the systematic observations results in distinct decoding performance.At high SNR(4~9dB),the observation information plays a more important role than the extrinsic information.Simulation results show that the proportion set at 1.2 is more suitable for the novel mapping in BICM-ID.When the BER is 10^(-4),more than 0.9dB coding gain over Rayleigh channels can be achieved for the improved mapping and decoding scheme.
文摘文章介绍一种结合权重学习的Turbo解码器,同时集成了传统的Turbo解码方法Max-Log-MAP,和传统的Max-Log-MAP方法具有相同的复杂度。基于传统的解码方法结合神经网络计算更为精确的权重,可实现误码率更低的解码结果,和传统解码方式Max-Log-MAP进行对比,在加性高斯白噪声(Additive White Gaussian Noise,AWGN)信道上具有更好的解码效果。通过仿真结果证明,该网络的解码误码率比传统的解码方法更小。
文摘该文提出一种改进的低密度奇偶校验(Low Density Parity-Check,LDPC)码的加权比特翻转译码算法。该算法引入了变量节点的更新规则,对翻转函数的计算更加精确,同时能够有效弱化环路振荡引起的误码。仿真结果表明,与已有的基于幅度和的加权比特翻转译码算法(SMWBF)相比,在加性高斯白噪声信道下,该文算法在复杂度增加很小的情况下获得了误码率性能的有效提升。