期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Gas kinetic flux solver based finite volume weighted essentially non-oscillatory scheme for inviscid compressible flows
1
作者 Lan JIANG Jie WU +1 位作者 Liming YANG Hao DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期961-980,共20页
A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined wit... A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined with the circular function-based GKFS(C-GKFS)to capture more details of the flow fields with fewer grids.Different from most of the current GKFSs,which are constructed based on the Maxwellian distribution function or its equivalent form,the C-GKFS simplifies the Maxwellian distribution function into the circular function,which ensures that the Euler or Navier-Stokes equations can be recovered correctly.This improves the efficiency of the GKFS and reduces its complexity to facilitate the practical application of engineering.Several benchmark cases are simulated,and good agreement can be obtained in comparison with the references,which demonstrates that the high-order C-GKFS can achieve the desired accuracy. 展开更多
关键词 circular function-based gas kinetic flux solver(C-GKFS) weighted essentially non-oscillatory(WENO)scheme compressible flow finite volume method
下载PDF
Sparse-Grid Implementation of Fixed-Point Fast Sweeping WENO Schemes for Eikonal Equations
2
作者 Zachary M.Miksis Yong-Tao Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期3-29,共27页
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of ... Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids. 展开更多
关键词 Fixed-point fast sweeping methods weighted essentially non-oscillatory(WENO)schemes Sparse grids Static Hamilton-Jacobi(H-J)equations Eikonal equations
下载PDF
Efficient Sparse-Grid Implementation of a Fifth-Order Multi-resolution WENO Scheme for Hyperbolic Equations
3
作者 Ernie Tsybulnik Xiaozhi Zhu Yong-Tao Zhang 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1339-1364,共26页
High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of th... High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of the WENO algorithm,large amount of computational costs are required for solving multidimensional problems.In our previous work(Lu et al.in Pure Appl Math Q 14:57–86,2018;Zhu and Zhang in J Sci Comput 87:44,2021),sparse-grid techniques were applied to the classical finite difference WENO schemes in solving multidimensional hyperbolic equations,and it was shown that significant CPU times were saved,while both accuracy and stability of the classical WENO schemes were maintained for computations on sparse grids.In this technical note,we apply the approach to recently developed finite difference multi-resolution WENO scheme specifically the fifth-order scheme,which has very interesting properties such as its simplicity in linear weights’construction over a classical WENO scheme.Numerical experiments on solving high dimensional hyperbolic equations including Vlasov based kinetic problems are performed to demonstrate that the sparse-grid computations achieve large savings of CPU times,and at the same time preserve comparable accuracy and resolution with those on corresponding regular single grids. 展开更多
关键词 weighted essentially non-oscillatory(WENO)schemes Multi-resolution WENO schemes Sparse grids High spatial dimensions Hyperbolic partial differential equations(PDEs)
下载PDF
New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties
4
作者 Alina Chertock Michael Herty +3 位作者 Arsen S.Iskhakov Safa Janajra Alexander Kurganov Maria Lukacova-Medvid'ova 《Communications on Applied Mathematics and Computation》 EI 2024年第3期2011-2044,共34页
In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume fram... In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume framework and is based on fifth-order weighted essentially non-oscillatory(WENO)interpolations in(multidimensional)random space combined with second-order piecewise linear reconstruction in physical space.Compared with spectral approximations in the random space,the presented methods are essentially non-oscillatory as they do not suffer from the Gibbs phenomenon while still achieving high-order accuracy.The new methods are tested on a number of numerical examples for both the Euler equations of gas dynamics and the Saint-Venant system of shallow-water equations.In the latter case,the methods are also proven to be well-balanced and positivity-preserving. 展开更多
关键词 Hyperbolic conservation and balance laws with uncertainties Finite-volume methods Central-upwind schemes weighted essentially non-oscillatory(WENO)interpolations
下载PDF
Interface flux reconstruction method based on optimized weight essentially non-oscillatory scheme 被引量:4
5
作者 Peixun YU Junqiang BAI +2 位作者 Hai YANG Song CHEN Kai PAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期1020-1029,共10页
Aimed at the computational aeroacoustics multi-scale problem of complex configurations discretized with multi-size mesh, the flux reconstruction method based on modified Weight Essentially Non-Oscillatory(WENO) sche... Aimed at the computational aeroacoustics multi-scale problem of complex configurations discretized with multi-size mesh, the flux reconstruction method based on modified Weight Essentially Non-Oscillatory(WENO) scheme is proposed at the interfaces of multi-block grids.With the idea of Dispersion-Relation-Preserving(DRP) scheme, different weight coefficients are obtained by optimization, so that it is in WENO schemes with various characteristics of dispersion and dissipation. On the basis, hybrid flux vector splitting method is utilized to intelligently judge the amplitude of the gap between grid interfaces. After the simulation and analysis of 1D convection equation with different initial conditions, modified WENO scheme is proved to be able to independently distinguish the gap amplitude and generate corresponding dissipation according to the grid resolution. Using the idea of flux reconstruction at grid interfaces, modified WENO scheme with increasing dissipation is applied at grid points, while DRP scheme with low dispersion and dissipation is applied at the inner part of grids. Moreover, Gauss impulse spread and periodic point sound source flow among three cylinders with multi-scale grids are carried out. The results show that the flux reconstruction method at grid interfaces is capable of dealing with Computational Aero Acoustics(CAA) multi-scale problems. 展开更多
关键词 Computational aeroacousties Dispersion-Relation-Preserving (DRP) scheme Flux reconstruction Modified weight essentially Non-Oscillatory (WENO)scheme Multi-size mesh
原文传递
Hypersonic Shock Wave/Boundary Layer Interactions by a Third-Order Optimized Symmetric WENO Scheme 被引量:1
6
作者 Li Chen Guo Qilong +1 位作者 Li Qin Zhang Hanxin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期524-534,共11页
A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achieveme... A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions. 展开更多
关键词 hypersonic flows shock wave/boundary layer interactions weighted essentially non-oscillatory(WENO)scheme slip boundary conditions
下载PDF
High-Order Bound-Preserving Finite Difference Methods for Multispecies and Multireaction Detonations 被引量:1
7
作者 Jie Du Yang Yang 《Communications on Applied Mathematics and Computation》 2023年第1期31-63,共33页
In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical ... In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme. 展开更多
关键词 weighted essentially non-oscillatory scheme Finite difference method Stiff source DETONATIONS Bound-preserving CONSERVATIVE
下载PDF
双重加权实质无波动激波捕捉格式 被引量:15
8
作者 宗文刚 邓小刚 张涵信 《空气动力学学报》 CSCD 北大核心 2003年第2期218-225,共8页
本文构造了一种新的加权激波捕捉格式,命名为双重加权实质无波动(DoubleWeightedEssentiallyNon-Oscillatory,简称DWENO)格式。DWENO格式不需要引进最优权值,并且可以递推地达到任意高阶精度。文中给出了典型算例的计算结果,这些结果表... 本文构造了一种新的加权激波捕捉格式,命名为双重加权实质无波动(DoubleWeightedEssentiallyNon-Oscillatory,简称DWENO)格式。DWENO格式不需要引进最优权值,并且可以递推地达到任意高阶精度。文中给出了典型算例的计算结果,这些结果表明DWENO格式具有高于WENO格式的间断分辨率。 展开更多
关键词 双重加权实质无波动激波捕捉格式 WENO格式 高阶精度 DWENO格式 光滑流场
下载PDF
海啸波作用下泥沙运动——Ⅲ.数学模型的建立与验证 被引量:9
9
作者 蒋昌波 陈杰 +2 位作者 程永舟 邓斌 隆院男 《水科学进展》 EI CAS CSCD 北大核心 2013年第1期88-94,共7页
基于Boussinesq方程耦合泥沙运动和地形演变模型,建立海啸作用下泥沙运动数学模型。地形演变模型采用WENO差分格式,并将WENO差分格式与Lax-Wendroff格式和FTBS格式进行对比分析。运用Synolakis、Kobayashi和Young的实验数据分别对水动... 基于Boussinesq方程耦合泥沙运动和地形演变模型,建立海啸作用下泥沙运动数学模型。地形演变模型采用WENO差分格式,并将WENO差分格式与Lax-Wendroff格式和FTBS格式进行对比分析。运用Synolakis、Kobayashi和Young的实验数据分别对水动力模块和地形演变模块进行验证,数值模拟结果与实验数据吻合良好,模型能够很好地模拟海啸波的传播、破碎、上爬、回落过程以及岸滩的冲淤变化过程,该数学模型能够运用到海啸作用下的岸滩演变研究和预测中。 展开更多
关键词 海啸 泥沙运动 岸滩演变 数学模型 WENO格式
下载PDF
双重加权实质无波动激波捕捉格式的改进和应用 被引量:8
10
作者 宗文刚 邓小刚 张涵信 《空气动力学学报》 CSCD 北大核心 2003年第4期399-407,共9页
本文重新研究了双重加权实质无波动(DWENO)激波捕捉格式的构造过程,对模板光滑系数的定义,以及两重权值的计算方法进行了改进,并通过一维Riemann问题测试了这些改进,确定了参数的选择范围。最后,本文将改进后的DWENO(r=3)格式进一步应... 本文重新研究了双重加权实质无波动(DWENO)激波捕捉格式的构造过程,对模板光滑系数的定义,以及两重权值的计算方法进行了改进,并通过一维Riemann问题测试了这些改进,确定了参数的选择范围。最后,本文将改进后的DWENO(r=3)格式进一步应用于一维、二维典型问题的数值模拟,并比较了DWENO格式和WENO格式的精度和分辨率。 展开更多
关键词 双重加权实质无波动 激波 捕捉格式 DWENO格式 数值模拟 计算
下载PDF
非平衡流解耦方法及其计算激波诱导燃烧的应用验证 被引量:8
11
作者 孙明波 梁剑寒 王振国 《航空动力学报》 EI CAS CSCD 北大核心 2008年第11期2055-2061,共7页
介绍并发展了一种改进的化学非平衡流动解耦方法.将流动控制方程与化学反应生成源项解耦处理,组分对流项的矢通量分裂基于流动方程密度对流项的分裂形式给出.对流项采用五阶WENO格式求解,化学反应源项的刚性采用简化的隐式方法进行处理... 介绍并发展了一种改进的化学非平衡流动解耦方法.将流动控制方程与化学反应生成源项解耦处理,组分对流项的矢通量分裂基于流动方程密度对流项的分裂形式给出.对流项采用五阶WENO格式求解,化学反应源项的刚性采用简化的隐式方法进行处理.将该方法应用于预混H2/O2和H2/Air激波诱导燃烧计算,得到的定常及非定常燃烧过程与实验观测相符,振荡频率与实验测量较吻合,结果表明该方法应用于多组分多步反应流计算是可行的. 展开更多
关键词 激波诱导燃烧 非平衡流 解耦方法 WENO格式
下载PDF
二维非结构网格上的高精度有限体积WENO格式 被引量:5
12
作者 郑华盛 赵宁 朱君 《空气动力学学报》 EI CSCD 北大核心 2010年第4期446-451,共6页
构造了非结构网格上二维双曲型守恒律的一类新的高精度有限体积WENO格式。其主要思想是:根据格式精度的要求,按照谱体积方法对三角形单元网格进行剖分,通过选取适当的子单元组成模板,利用WENO重构方法重构二阶和三阶多项式,利用有限体... 构造了非结构网格上二维双曲型守恒律的一类新的高精度有限体积WENO格式。其主要思想是:根据格式精度的要求,按照谱体积方法对三角形单元网格进行剖分,通过选取适当的子单元组成模板,利用WENO重构方法重构二阶和三阶多项式,利用有限体积公式和高阶Runge-Kutta TVD时间离散方法,构造了非结构网格上二维双曲型守恒律的一致二阶和三阶精度的有限体积WENO格式。然后,推广到二维Euler方程组。最后,给出几个数值算例,验证了格式的稳定性、高阶精度和高分辨捕捉激波等间断的能力。 展开更多
关键词 非结构网格 WENO格式 高阶精度 有限体积
下载PDF
加权基本无振荡格式研究进展 被引量:4
13
作者 赵海洋 刘伟 +1 位作者 万国新 任兵 《力学季刊》 CSCD 北大核心 2005年第1期87-95,共9页
加权型基本无振荡WENO格式是近十年发展起来的一类高阶、高精度格式,它是在ENO格式的基础上采用加权思想构造的,对流场内的间断和细致结构具有较高的分辨率,适于求解包含激波、膨胀波以及接触间断等复杂结构的流场,目前已发展成为计算... 加权型基本无振荡WENO格式是近十年发展起来的一类高阶、高精度格式,它是在ENO格式的基础上采用加权思想构造的,对流场内的间断和细致结构具有较高的分辨率,适于求解包含激波、膨胀波以及接触间断等复杂结构的流场,目前已发展成为计算流体力学中一种重要的方法。本文针对加权型基本无振荡格式近年来的进展作一简要介绍。 展开更多
关键词 计算流体力学 加权基本无振荡格式 高阶高精度 数值模拟
下载PDF
基于加权本质无振荡格式的二维溃坝水流数值模拟 被引量:13
14
作者 魏文礼 郭永涛 《水利学报》 EI CSCD 北大核心 2007年第5期596-600,共5页
将加权本质无振荡WENO(Weighted essentially non-oscillatory)格式和Runge-Kutta时间离散的思想应用于二维浅水控制方程的求解中,建立了模拟大坝瞬间全溃或局部溃倒所致的洪水演进过程的数学模型。应用该模型对一维矩形明渠中大坝瞬间... 将加权本质无振荡WENO(Weighted essentially non-oscillatory)格式和Runge-Kutta时间离散的思想应用于二维浅水控制方程的求解中,建立了模拟大坝瞬间全溃或局部溃倒所致的洪水演进过程的数学模型。应用该模型对一维矩形明渠中大坝瞬间全溃所致的水流运动进行了数值计算,并与理论解进行了比较,证实了方法的可靠性。最后用该模型预测了矩形河道中大坝瞬间局部溃倒时的洪水演进过程,模拟结果与实际相符。算例表明采用WENO格式所建立的高分辨率溃坝模型能够很好地模拟溃坝波的演进过程。 展开更多
关键词 WENO格式 溃坝 数值模拟
下载PDF
两类激波捕捉格式的性能分析 被引量:3
15
作者 于剑 阎超 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第1期10-13,共4页
考虑了两类典型的激波捕捉格式:特征形式的MUSCL(Monotone Upstream-centred Schemes for Conservation Laws)格式和WENO(Weighted Essentially Non-Oscillatory)格式.MUSCL格式在作特征变换时使用了局部线性化的思想,并且针对波系的性... 考虑了两类典型的激波捕捉格式:特征形式的MUSCL(Monotone Upstream-centred Schemes for Conservation Laws)格式和WENO(Weighted Essentially Non-Oscillatory)格式.MUSCL格式在作特征变换时使用了局部线性化的思想,并且针对波系的性质施加相应的限制器;通过逐维重构实现有限体积法的WENO格式.针对一维、二维和三维Euler系统进行数值实验.在一维和二维的情况下,特征形式的MUSCL格式在接触间断的捕捉上具有较明显的优势,而对于激波的捕捉则差别不大.对于三维问题则是WENO格式对流场的分辨更精细.最后对上述结果给出解释,并且提出了可能的改进方法. 展开更多
关键词 计算流体力学 有限体积法 特征变量 加权本质无振荡格式
下载PDF
2类高阶格式数值测试和比较 被引量:1
16
作者 杨水平 李寿佛 莫宏敏 《吉首大学学报(自然科学版)》 CAS 2007年第4期30-34,共5页
通过求解二维Burgers方程初边值问题、二维周期漩涡问题、Richtmyer Meshkov(简称RM)不稳定性问题和Ray-leigh-Taylor(简称RT)不稳定性问题,对五阶FD-WENO格式(简称WENO5)及二阶Godunov格式MUSCL进行了数值测试和比较.所得结果对于求解... 通过求解二维Burgers方程初边值问题、二维周期漩涡问题、Richtmyer Meshkov(简称RM)不稳定性问题和Ray-leigh-Taylor(简称RT)不稳定性问题,对五阶FD-WENO格式(简称WENO5)及二阶Godunov格式MUSCL进行了数值测试和比较.所得结果对于求解气体动力学问题及辐射流体力学问题时,怎样恰当地选择数值方法具有一定参考作用. 展开更多
关键词 WENO格式 Godunov格式 EULER方程
下载PDF
一种通量加权型紧致格式 被引量:1
17
作者 袁湘江 涂国华 +1 位作者 许坦 陆利蓬 《航空动力学报》 EI CAS CSCD 北大核心 2008年第1期64-69,共6页
将通量加权的思想引入到紧致格式中,构造了一个传统方法与紧致格式混合组成的加权型差分格式.利用该格式与二阶TVD格式分别计算了一维方波、组合波问题和一些黎曼问题,如Sod问题和Shu问题,以及一维定常激波问题.计算结果的比较表明加权... 将通量加权的思想引入到紧致格式中,构造了一个传统方法与紧致格式混合组成的加权型差分格式.利用该格式与二阶TVD格式分别计算了一维方波、组合波问题和一些黎曼问题,如Sod问题和Shu问题,以及一维定常激波问题.计算结果的比较表明加权格式无论在捕捉各种间断,还是在分辨各种复杂波系上,都具有较大的优势,并与精确解非常吻合. 展开更多
关键词 航空 航天推进系统 数值方法 迎风紧致格式 通量加权型差分格式
下载PDF
同向双涡合并过程声波研究 被引量:1
18
作者 张焕好 陈志华 +1 位作者 黄振贵 姜孝海 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第6期886-890,共5页
为了对常见不稳定流中声波产生过程的基本物理现象进行研究,基于大涡模拟方法与高阶精度加权本质无振荡混合格式,对剪切流中同向双涡合并过程的动力学流场及其声场进行了数值模拟。结果描述了同向旋转双涡合并过程,揭示了双涡合并产生... 为了对常见不稳定流中声波产生过程的基本物理现象进行研究,基于大涡模拟方法与高阶精度加权本质无振荡混合格式,对剪切流中同向双涡合并过程的动力学流场及其声场进行了数值模拟。结果描述了同向旋转双涡合并过程,揭示了双涡合并产生旋转四极子声源的机理,且与相关研究相符。对剪切层的气动声场进行了数值模拟,揭示了剪切层中双涡旋转合并过程,发现涡合并过程产生的声波在整个剪切层声场中占主导作用,且合并在半个周期内完成。 展开更多
关键词 气动声学 涡合并 声波 大涡模拟 加权本质无振荡混合格式
下载PDF
Level Set追踪等温非牛顿熔体前沿界面 被引量:2
19
作者 郑素佩 欧阳洁 《力学与实践》 CSCD 北大核心 2007年第3期11-14,共4页
应用Level Set方法追踪薄壁型腔内Hele-Shaw熔体流动前沿界面,采用5阶加权本质无振荡格式耦合中心差分格式实现了充填阶段的动态模拟.准确追踪到了不同时刻熔体前沿界面,并得到了对应的压力等值线分布,数值结果表明Level Set方法是准... 应用Level Set方法追踪薄壁型腔内Hele-Shaw熔体流动前沿界面,采用5阶加权本质无振荡格式耦合中心差分格式实现了充填阶段的动态模拟.准确追踪到了不同时刻熔体前沿界面,并得到了对应的压力等值线分布,数值结果表明Level Set方法是准确追踪注塑成型熔体前沿界面的一种行之有效的方法. 展开更多
关键词 LEVEL SET 方法 WENO 格式 熔体前沿 注塑成型
下载PDF
欧拉方程数值求解的高精度通量分裂方法 被引量:1
20
作者 郑秋亚 苏宁亚 梁益华 《兵工学报》 EI CAS CSCD 北大核心 2019年第12期2545-2550,共6页
针对欧拉方程,提出一种将总能对流迎风和分压(E-CUSP)格式与加权本质无振荡(WENO)格式相耦合的新格式。在空间方向上,通过对低耗散E-CUSP格式的通量,采用高精度WENO格式进行重构;在时间方向上,使用4阶总变差递减(TVD)的Runge-Kutta方法... 针对欧拉方程,提出一种将总能对流迎风和分压(E-CUSP)格式与加权本质无振荡(WENO)格式相耦合的新格式。在空间方向上,通过对低耗散E-CUSP格式的通量,采用高精度WENO格式进行重构;在时间方向上,使用4阶总变差递减(TVD)的Runge-Kutta方法进行推进,由此得到求解欧拉方程的高精度通量分裂方法。考虑E-CUSP格式与WENO重构进行耦合得到新格式,使其空间精度进一步提高。通过对激波管问题进行数值模拟发现,新的格式相对于E-CUSP格式对激波和接触间断捕捉的效果更加精准。数值结果表明:耦合得到的新格式具有更高的准确性和稳健性。 展开更多
关键词 欧拉方程 通量分裂方法 计算流体力学 总能对流迎风和分压格式 加权本质无振荡格式
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部