期刊文献+
共找到317篇文章
< 1 2 16 >
每页显示 20 50 100
Parameter Estimation of a Valve-Controlled Cylinder System Model Based on Bench Test and Operating Data Fusion
1
作者 Deying Su Shaojie Wang +3 位作者 Haojing Lin Xiaosong Xia Yubing Xu Liang Hou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期247-263,共17页
The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ... The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies. 展开更多
关键词 Valve-controlled cylinder system Parameter estimation The Bayesian theory Data fusion method weight coefficients
下载PDF
Self-tuning weighted measurement fusion Kalman filter and its convergence 被引量:2
2
作者 Chenjian RAN,Zili DENG (Department of Automation,Heilongjiang University,Harbin Heilongjiang 150080,China) 《控制理论与应用(英文版)》 EI 2010年第4期435-440,共6页
For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorit... For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorithm,correlation method and least squares fusion criterion.Substituting these consistent estimators into the optimal weighted measurement fusion Kalman filter,a self-tuning weighted measurement fusion Kalman filter is presented.Using the dynamic error system analysis (DESA) method,the convergence of the self-tuning weighted measurement fusion Kalman filter is proved,i.e.,the self-tuning Kalman filter converges to the corresponding optimal Kalman filter in a realization.Therefore,the self-tuning weighted measurement fusion Kalman filter has asymptotic global optimality.One simulation example for a 4-sensor target tracking system verifies its effectiveness. 展开更多
关键词 Multisensor weighted measurement fusion Fused parameter estimator Fused noise variance estimator Self-tuning fusion Kalman filter Asymptotic global optimality CONVERGENCE
下载PDF
Aircraft attitude estimation of MEMS sensor based on modified particle filter 被引量:3
3
作者 MA Wen-gang WANG Xiao-peng +1 位作者 ZHANG Yong-fang CHENG Dong-liang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第2期180-187,共8页
The non-linearity problem of aircraft system could not be overcome by using the MEMS sensor only.In order to improve the accuracy of aerial vehicle attitude,an aircraft attitude estimation of the MEMS sensor based on ... The non-linearity problem of aircraft system could not be overcome by using the MEMS sensor only.In order to improve the accuracy of aerial vehicle attitude,an aircraft attitude estimation of the MEMS sensor based on modified particle filter is proposed.The aircraft attitude is optimized by the conjugate gradient method,and the drift error of gyroscope is reduced.Moreover,the particle weight is updated by the observed value to obtain an optimized state estimate.Finally,the conjugate gradient method and the modified particle filter are weightily combined to determine the optimal weighting factor.The attitude estimation is carried out with STM32 and MEMS sensor as the core to design system.The experimental results show that the static and dynamic attitude estimation performances of the aircraft are improved.The performances are well,the attitude data is relatively stable,and the tracking characteristics are better.Moreover,it has better robustness and stability. 展开更多
关键词 aircraft attitude estimation modified particle filter MEMS sensor conjugate gradient method weighted fusion
下载PDF
A new information fusion white noise deconvolution estimator
4
作者 Xiaojun SUN Shigang WANG Zili DENG 《控制理论与应用(英文版)》 EI 2009年第4期438-444,共7页
The white noise deconvolution or input white noise estimation problem has important applications in oil seismic exploration, communication and signal processing. By the modern time series analysis method, based on the... The white noise deconvolution or input white noise estimation problem has important applications in oil seismic exploration, communication and signal processing. By the modern time series analysis method, based on the autoregressive moving average (ARMA) innovation model, a new information fusion white noise deconvolution estimator is presented for the general multisensor systems with different local dynamic models and correlated noises. It can handle the input white noise fused filtering, prediction and smoothing problems, and it is applicable to systems with colored measurement noises. It is locally optimal, and is globally suboptimal. The accuracy of the fuser is higher than that of each local white noise estimator. In order to compute the optimal weights, the formula computing the local estimation error cross-covariances is given. A Monte Carlo simulation example for the system with Bernoulli-Gaussian input white noise shows the effectiveness and performances. 展开更多
关键词 Multisensor information fusion weighted fusion White noise estimator DECONVOLUTION Modern time series analysis method
下载PDF
Calibration of Nondestructive Assay Instruments: An Application of Linear Regression and Propagation of Variance
5
作者 Stephen Croft Tom Burr 《Applied Mathematics》 2014年第5期785-798,共14页
Several nondestructive assay (NDA) methods to quantify special nuclear materials use calibration curves that are linear in the predictor, either directly or as an intermediate step. The linear response model is also o... Several nondestructive assay (NDA) methods to quantify special nuclear materials use calibration curves that are linear in the predictor, either directly or as an intermediate step. The linear response model is also often used to illustrate the fundamentals of calibration, and is the usual detector behavior assumed when evaluating detection limits. It is therefore important for the NDA community to have a common understanding of how to implement a linear calibration according to the common method of least squares and how to assess uncertainty in inferred nuclear quantities during the prediction stage following calibration. Therefore, this paper illustrates regression, residual diagnostics, effect of estimation errors in estimated variances used for weighted least squares, and variance propagation in a form suitable for implementation. Before the calibration can be used, a transformation of axes is required;this step, along with variance propagation is not currently explained in available NDA standard guidelines. The role of systematic and random uncertainty is illustrated and expands on that given previously for the chosen practical NDA example. A listing of open-source software is provided in the Appendix. 展开更多
关键词 Linear CALIBRATION estimation Errors in weightS for weighted Least SQUARES NON-DESTRUCTIVE ASSAY variance PROPAGATION
下载PDF
Linear minimum variance estimation fusion 被引量:4
6
作者 ZHUYunmin LlXianrong(X.RongLi) ZHAOJuan 《Science in China(Series F)》 2004年第6期728-740,共13页
This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion f... This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion formula is developed by extending the Gauss-Markov estimation to the random parameter under estimation. First, we formulate the problem of distributed estimation fusion in the LMV setting. In this setting, the fused estimator is a weighted sum of local estimates with a matrix weight. We show that the set of weights is optimal if and only if it is a solution of a matrix quadratic optimization problem subject to a convex linear equality constraint. Second, we present a unique solution to the above optimization problem, which depends only on the covariance matrix Ck.Third, if a priori information, the expectation and covariance, of the estimated quantity is unknown, a necessary and sufficient condition for the above LMV fusion becoming the best unbiased LMV estimation with known prior information as the above is presented. We also discuss the generality and usefulness of the LMV fusion formulas developed. Finally, we provide an off-line recursion of Ck for a class of multisensor linear systems with coupled measurement noises. 展开更多
关键词 fusion distributed estimation linear minimum variance estimation.
原文传递
Dimension reduction based on weighted variance estimate
7
作者 ZHAO JunLong1 & XU XingZhong2 1 Department of Mathematics, Beihang University Laboratory of Mathematics, Information and Behavior of the Ministry of Education, Beijing 100083, China 2 Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China 《Science China Mathematics》 SCIE 2009年第3期539-560,共22页
In this paper, we propose a new estimate for dimension reduction, called the weighted variance estimate (WVE), which includes Sliced Average Variance Estimate (SAVE) as a special case. Bootstrap method is used to sele... In this paper, we propose a new estimate for dimension reduction, called the weighted variance estimate (WVE), which includes Sliced Average Variance Estimate (SAVE) as a special case. Bootstrap method is used to select the best estimate from the WVE and to estimate the structure dimension. And this selected best estimate usually performs better than the existing methods such as Sliced Inverse Regression (SIR), SAVE, etc. Many methods such as SIR, SAVE, etc. usually put the same weight on each observation to estimate central subspace (CS). By introducing a weight function, WVE puts different weights on different observations according to distance of observations from CS. The weight function makes WVE have very good performance in general and complicated situations, for example, the distribution of regressor deviating severely from elliptical distribution which is the base of many methods, such as SIR, etc. And compared with many existing methods, WVE is insensitive to the distribution of the regressor. The consistency of the WVE is established. Simulations to compare the performances of WVE with other existing methods confirm the advantage of WVE. 展开更多
关键词 central subspace contour regression sliced average variance estimate sliced inverse regression sufficient dimension reduction weight function 62G08 62H05
原文传递
NEW RESULTS ABOUT THE RELATIONSHIP BETWEEN OPTIMALLY WEIGHTED LEAST SQUARES ESTIMATE AND LINEAR MINIMUM VARIANCE ESTIMATE
8
作者 Juan ZHAO Yunmin ZHU 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第1期137-149,共13页
The optimally weighted least squares estimate and the linear minimum variance estimateare two of the most popular estimation methods for a linear model.In this paper,the authors makea comprehensive discussion about th... The optimally weighted least squares estimate and the linear minimum variance estimateare two of the most popular estimation methods for a linear model.In this paper,the authors makea comprehensive discussion about the relationship between the two estimates.Firstly,the authorsconsider the classical linear model in which the coefficient matrix of the linear model is deterministic,and the necessary and sufficient condition for equivalence of the two estimates is derived.Moreover,under certain conditions on variance matrix invertibility,the two estimates can be identical providedthat they use the same a priori information of the parameter being estimated.Secondly,the authorsconsider the linear model with random coefficient matrix which is called the extended linear model;under certain conditions on variance matrix invertibility,it is proved that the former outperforms thelatter when using the same a priori information of the parameter. 展开更多
关键词 Conditional expectation linear minimum variance estimation necessary and sufficient condition optimally weighted least squares estimation.
原文传递
Two-level Robust Measurement Fusion Kalman Filter for Clustering Sensor Networks 被引量:1
9
作者 ZHANG Peng QI Wen-Juan DENG Zi-Li 《自动化学报》 EI CSCD 北大核心 2014年第11期2585-2594,共10页
关键词 卡尔曼滤波器 传感器网络 簇头 KALMAN滤波器 LYAPUNOV方程 鲁棒估计 观测 测量融合
下载PDF
Applying Score Reliability Fusion to Bi-Model Emotional Speaker Recognition
10
作者 H. B. Zhang T. Wang +1 位作者 T. Huang X. Yang 《Journal of Signal and Information Processing》 2013年第3期1-6,共6页
Emotion mismatch between training and testing is one of the important factors causing the performance degradation of speaker recognition system. In our previous work, a bi-model emotion speaker recognition (BESR) meth... Emotion mismatch between training and testing is one of the important factors causing the performance degradation of speaker recognition system. In our previous work, a bi-model emotion speaker recognition (BESR) method based on virtual HD (High Different from neutral, with large pitch offset) speech synthesizing was proposed to deal with this problem. It enhanced the system performance under mismatch emotion states in MASC, while still suffering the system risk introduced by fusing the scores from the unreliable VHD model and the neutral model with equal weight. In this paper, we propose a new BESR method based on score reliability fusion. Two strategies, by utilizing identification rate and scores average relative loss difference, are presented to estimate the weights for the two group scores. The results on both MASC and EPST shows that by using the weights generated by the two strategies, the BESR method achieve a better performance than that by using the equal weight, and the better one even achieves a result comparable to that by using the best weights selected by exhaustive strategy. 展开更多
关键词 EMOTIONAL Speaker Recogitnion SCORE RELIABILITY fusion fusion weight estimating Strategy Bi-Model
下载PDF
嵌套阵的疏密子阵融合波达方向估计方法
11
作者 王娜 赵宣植 +1 位作者 刘增力 侯书画 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第3期607-614,共8页
为有效利用嵌套阵包含疏密子阵的几何结构以提高估计性能,本文提出一种在2子阵上分别测向再融合的波达方向估计方法。通过理论分析和实际案例阐明融合嵌套阵的两子阵测向结果可以消除信源角度估计模糊,且不会出现互质阵解模糊时伴随的... 为有效利用嵌套阵包含疏密子阵的几何结构以提高估计性能,本文提出一种在2子阵上分别测向再融合的波达方向估计方法。通过理论分析和实际案例阐明融合嵌套阵的两子阵测向结果可以消除信源角度估计模糊,且不会出现互质阵解模糊时伴随的匹配错误。利用无需谱峰搜索的求根多重信号分类方法在嵌套阵2子阵上求解测向结果,若稀疏子阵间距为N倍半波长,推导出对其复根开N次方可获含模糊角的高精度估计,再结合最小方差准则与精度较低但无模糊的密集子阵测向结果进行融合,最终得到高精度的波达方向估计。与嵌套阵已有算法相比,该算法提高了波达方向估计精度和分辨率,由于无需2子阵协方差降低了计算量,且能够支持嵌套阵的分布式配置。仿真结果验证了所提算法的有效性。 展开更多
关键词 嵌套阵列 求根多重信号分类 方差融合 疏密子阵 波达方向估计 稀疏子阵 密集子阵 解模糊
下载PDF
抗差Helmert分量估计在地铁CPⅢ控制网平差中的应用
12
作者 朱武松 《城市勘测》 2024年第2期133-136,共4页
为使CPⅢ控制网数据定权合理、提高平差成果精度,并具有抗粗差特性,论文提出采用结合Huber的Helmert抗差分量估计定权方法对CPⅢ控制网中的水平角、竖直角和斜距三类观测值进行合理定权平差,以福州市轨道交通4号线工程西门站至东街口站... 为使CPⅢ控制网数据定权合理、提高平差成果精度,并具有抗粗差特性,论文提出采用结合Huber的Helmert抗差分量估计定权方法对CPⅢ控制网中的水平角、竖直角和斜距三类观测值进行合理定权平差,以福州市轨道交通4号线工程西门站至东街口站区间右线CPⅢ控制网测量项目为例,验证了该方法的定权合理性和可靠性,并可获得点位偏差小、精度可靠且有抗粗差能力的平差成果。 展开更多
关键词 CPⅢ控制网 定权 抗差Helmert方差分量估计 平差
下载PDF
共同富裕的动态演进、结构差异与收敛性研究 被引量:2
13
作者 杨蕙宁 谷彦芳 《统计与决策》 CSSCI 北大核心 2024年第4期62-67,共6页
文章从经济质效并增、全域美丽建设、公共服务均等化、精神生活富裕四个维度建立共同富裕评价指标体系。在此基础上,使用熵权法计算2012—2021年全国及各省份共同富裕综合指数,利用Kernel密度估计、方差分解、变异系数与空间面板模型方... 文章从经济质效并增、全域美丽建设、公共服务均等化、精神生活富裕四个维度建立共同富裕评价指标体系。在此基础上,使用熵权法计算2012—2021年全国及各省份共同富裕综合指数,利用Kernel密度估计、方差分解、变异系数与空间面板模型方法,探析共同富裕的动态演进特点、结构差异和收敛性。结果显示:共同富裕水平总体偏低,但呈显著攀升趋势;全国及三大地区的共同富裕水平存在不同极化特点;精神生活富裕是引致共同富裕结构差异的主要原因。中部、西部地区共同富裕水平存在σ收敛;全国、中部与西部地区均存在β收敛。 展开更多
关键词 共同富裕 熵权法 Kernel密度估计 方差分解
下载PDF
含未知输入非线性系统的扩展平方根容积卡尔曼滤波算法
14
作者 鹿子豪 王娜 +2 位作者 林崇 赵克友 董世桂 《科学技术与工程》 北大核心 2024年第14期5892-5900,共9页
针对工程实际应用中存在的未知输入会导致经典的非线性滤波器状态估计精度下降甚至滤波发散的问题,提出了一种基于最小方差无偏估计(minimum variance unbiased estimation,MVUE)准则的扩展平方根容积卡尔曼滤波(extended square-root c... 针对工程实际应用中存在的未知输入会导致经典的非线性滤波器状态估计精度下降甚至滤波发散的问题,提出了一种基于最小方差无偏估计(minimum variance unbiased estimation,MVUE)准则的扩展平方根容积卡尔曼滤波(extended square-root cubature Kalman filter,ESRCKF)算法。首先,结合上一时刻未知输入估计值对状态一步预测值进行修正,得到含未知输入条件下的状态预测值。其次,设计新息并采用加权最小二乘(weighted least squares,WLS)法获取当前时刻未知输入的无偏估计。最后,通过最小化协方差矩阵的迹,同时采用拉格朗日乘子法和舒尔补引理得到系统状态的最小方差无偏估计。仿真结果表明,相比于现有的非线性滤波算法,ESRCKF算法提高了在处理含未知输入非线性系统时的状态估计精度,并能同时实现系统状态和未知输入的最优估计,验证了该算法的有效性。 展开更多
关键词 平方根容积卡尔曼滤波 最小方差无偏估计 加权最小二乘法 状态估计 未知输入估计
下载PDF
自相关加权融合的高精度频率估计算法
15
作者 刘康 何明浩 +2 位作者 陈昌孝 曾莎 李争 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第4期222-228,共7页
为保证雷达对抗侦察系统在复杂电磁环境下的工作性能,提出了一种基于自相关加权融合的多段信号频率估计算法。对各段含噪信号进行自相关处理得到初相位为零、频率与原信号一致的高信噪比正弦信号,利用反余切算子构建支持度矩阵对自相关... 为保证雷达对抗侦察系统在复杂电磁环境下的工作性能,提出了一种基于自相关加权融合的多段信号频率估计算法。对各段含噪信号进行自相关处理得到初相位为零、频率与原信号一致的高信噪比正弦信号,利用反余切算子构建支持度矩阵对自相关信号进行实时加权融合,在粗估计基础上建立参考信号,通过最小化误差函数求得高精度频率估计结果。仿真结果表明,相较于现有算法,本文算法在满足较低计算量的同时,不但精度明显提高,且在不同信噪比、信号长度以及信号异常等条件下均具备稳定的估计性能,为基于多传感器的雷达对抗情报侦察提供了参考。 展开更多
关键词 多段信号融合 频率估计 自相关 实时加权 误差函数
下载PDF
基于多关键点检测加权融合的无人机相对位姿估计算法
16
作者 葛泉波 李凯 张兴国 《自动化学报》 EI CAS CSCD 北大核心 2024年第7期1402-1416,共15页
针对无人机降落阶段中无人船受水面波浪影响导致图像产生运动模糊以及获取无人机相对位姿精度低且鲁棒性差的问题,提出一种基于多模型关键点加权融合的6D目标位姿估计算法,以提高位姿估计的精度和鲁棒性.首先,基于无人船陀螺仪得到的运... 针对无人机降落阶段中无人船受水面波浪影响导致图像产生运动模糊以及获取无人机相对位姿精度低且鲁棒性差的问题,提出一种基于多模型关键点加权融合的6D目标位姿估计算法,以提高位姿估计的精度和鲁棒性.首先,基于无人船陀螺仪得到的运动信息设计帧间抖动模型,通过还原图像信息达到降低图像噪声的目的;然后,设计一种多模型的级联回归特征提取算法,通过多模型检测舰载视觉系统获取的图像,以增强特征空间的多样性;同时,将检测过程中关键点定位形状增量集作为融合权重对模型进行加权融合,以提高特征空间的鲁棒性;紧接着,利用EPnP(Efficient perspective-n-point)计算关键点相机坐标系坐标,将PnP(Perspective-n-point)问题转化为ICP(Iterative closest point)问题;最终,基于关键点解集的离散度为关键点赋权,使用ICP算法求解位姿以削弱深度信息对位姿的影响.仿真结果表明,该算法能够建立一个精度更高的特征空间,使得位姿解算时特征映射的损失降低,最终提高位姿解算的精度. 展开更多
关键词 辅助无人机降落 舰载视觉系统 6D 位姿估计 加权融合 关键点检测 级联特征提取
下载PDF
基于双基地阵元级数据融合的声源定位算法
17
作者 李秀坤 王集 于歌 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第10期2007-2013,共7页
针对双基地声呐系统中,利用几何关系构建定位方程求解定位方式在多目标时存在定位模糊的现象,本文利用阵元级数据融合提出了一种目标定位算法。利用双基地系统中目标时延和方位的耦合关系,将接收数据近似地表示成广义方位估计的模型,实... 针对双基地声呐系统中,利用几何关系构建定位方程求解定位方式在多目标时存在定位模糊的现象,本文利用阵元级数据融合提出了一种目标定位算法。利用双基地系统中目标时延和方位的耦合关系,将接收数据近似地表示成广义方位估计的模型,实现对时延和方位的同时补偿,将定位问题转换为空间谱估计问题。通过添加虚拟源的方式改进了经典的最小方差无偏估计算法权值的计算方法,得到了旁瓣更低的增强型最小方差无偏估计算法,使得该算法在多目标情况下也不存在定位模糊现象,从而可以省去后续的数据关联等步骤。数值仿真结果表明:相比于基于方位估计的双基地定位算法,本文利用双基地阵元级数据融合提出的算法在单目标和双目标情况下获得了更高的定位精度,在一定信噪比条件下定位误差较经典方法低5 dB。数值仿真和分析展示了本文所提方法在双基地声呐中的应用潜力。 展开更多
关键词 双基地声呐 声源定位算法 空间谱估计 数据融合 最小方差无偏估计算法 定位方程 旁瓣抑制 自适应加权
下载PDF
基于无监督显著性掩码引导的红外与可见光图像融合网络
18
作者 李东阳 聂仁灿 +1 位作者 潘琳娜 李贺 《计算机科学》 CSCD 北大核心 2024年第S01期356-360,共5页
在具有挑战性的拍摄环境中,使用单张红外或可见光图像很难捕获清晰详细的纹理信息以及热辐射信息。然而,红外和可见光图像融合允许保存来自红外图像的热辐射信息和来自可见光图像的纹理细节。现有的许多方法在融合过程中直接生成融合图... 在具有挑战性的拍摄环境中,使用单张红外或可见光图像很难捕获清晰详细的纹理信息以及热辐射信息。然而,红外和可见光图像融合允许保存来自红外图像的热辐射信息和来自可见光图像的纹理细节。现有的许多方法在融合过程中直接生成融合图像,忽略了对源图像像素级权重贡献的估计,强调了不同源图像之间的学习。为此,提出了基于无监督显著性掩码引导的红外与可见光图像融合网络,利用密集结构在源图像中进行全面的特征提取。它产生一个权重估计概率来评估每个源图像对融合图像的贡献。此外,由于红外与可见光图像缺乏真实标签,难以使用有监督学习,UMGN还引入了显著性掩码,便于网络集中学习红外图像的热辐射信息和可见光纹理信息。在训练过程中还引入了加权保真度项和梯度损失,以防止梯度退化。与大量其他最先进的方法进行对比实验,结果证明了所提出的UMGN方法的优越性和有效性。 展开更多
关键词 无监督学习 显著性掩码 权重估计概率 红外与可见光图像融合
下载PDF
ON THE CONDITION FOR CONSISTENCY OF RESAMPLING ESTIMATORS OF VARIANCE OF TRIMMED L-STATISTICS
19
作者 SHI Jian(Institute of Systems Science, Academia Sinica, Beijing 100080, China)ZHENG Zhongguo(Department of Probability and Statistics, Peking University, Beijing 100871, China) 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1997年第3期208-216,共9页
In this paper, a counter-example is presented to show that conditions given by[1] and [2] are not enough to guarantee the consistency of resampling estimators of varianceof trimmed L-statistics. To this end, a rather ... In this paper, a counter-example is presented to show that conditions given by[1] and [2] are not enough to guarantee the consistency of resampling estimators of varianceof trimmed L-statistics. To this end, a rather weak but sufficient condition is proposedto ensure the strong consistency. Lastly, a declaration in [3] on the generalization of amodified resampling procedure is found to be invalid. 展开更多
关键词 L-STATISTICS BOOTSTRAP RANDOM weighting variance estimation
原文传递
智能变电站便携式变压器油色谱分析技术研究
20
作者 吴定亮 杨进 +2 位作者 赵旭 贾豪 方艺琳 《电工技术》 2024年第10期94-96,共3页
变压器油色谱分析涉及因素较多,导致分析结果与实际情况的误差难以得到有效控制。为此,提出智能变电站便携式变压器油色谱分析技术。分别将关系到变压器性能和安全的气体成分浓度、影响油中气体溶解度的变压器内部温度以及影响油中气体... 变压器油色谱分析涉及因素较多,导致分析结果与实际情况的误差难以得到有效控制。为此,提出智能变电站便携式变压器油色谱分析技术。分别将关系到变压器性能和安全的气体成分浓度、影响油中气体溶解度的变压器内部温度以及影响油中气体浓度的变压器内部压力作为具体的特征参量,并将变压器油色谱原始数据特征参量累积方差贡献率之和为1作为约束,设置主因子;在分析阶段,考虑到气体浓度与选择的特征变量之间存在线性关系,引入线性回归模型对主因子进行分析,并通过迭代加权最小二乘估计回归系数,利用回归残差对变压器油色谱原始数据中气体含量进行分析。测试结果表明,设计的智能变电站便携式变压器油色谱分析技术可实现对变压器油中不同溶解气体含量的精准分析,误差稳定在3.00μL/L以内。 展开更多
关键词 智能变电站 便携式变压器 油色谱分析 特征参量 累积方差贡献率 主因子 线性回归模型 加权最小二乘估计回归系数
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部