Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted...Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.展开更多
Tarnavas established mixed weighted power mean inequality in 1999. A separation of weighted power mean inequslity was derived in this paper. As its applications, some separations of other inequalities were given.
The theta (t)-type oscillatory singular integral operators has been discussed. With the non-negative locally integrable weighted function, the weighted norm inequality of theta ( t) -type oscillatory singular integral...The theta (t)-type oscillatory singular integral operators has been discussed. With the non-negative locally integrable weighted function, the weighted norm inequality of theta ( t) -type oscillatory singular integral operators is proved, and the weighted function has replaced by action of Hardy-Littlewood maximal operators several times.展开更多
The best constant of discrete Sobolev inequality on the truncated tetrahedron with a weight which describes 2 kinds of spring constants or bond distances. Main results coincides with the ones of known results by Kamet...The best constant of discrete Sobolev inequality on the truncated tetrahedron with a weight which describes 2 kinds of spring constants or bond distances. Main results coincides with the ones of known results by Kametaka et al. under the assumption of uniformity of the spring constants. Since the buckyball fullerene C60 has 2 kinds of edges, destruction of uniformity makes us proceed the application to the chemistry of fullerenes.展开更多
Here we consider some weighted logarithmic Sobolev inequalities which can be used in the theory of singular Riemanian manifolds.We give the necessary and sufficient conditions such that the 1-dimension weighted logari...Here we consider some weighted logarithmic Sobolev inequalities which can be used in the theory of singular Riemanian manifolds.We give the necessary and sufficient conditions such that the 1-dimension weighted logarithmic Sobolev inequality is true and obtain a new estimate on the entropy.展开更多
In this paper we obtain the fundamental solution for a class of weighted BaouendiGrushin type operator L_(p,γ,α)u = ▽_γ·(|▽_γu|^(p-2)ρ~α▽_γu) on R^(m+n )with singularity at the origin,where ▽_γ is the...In this paper we obtain the fundamental solution for a class of weighted BaouendiGrushin type operator L_(p,γ,α)u = ▽_γ·(|▽_γu|^(p-2)ρ~α▽_γu) on R^(m+n )with singularity at the origin,where ▽_γ is the gradient operator defined by ▽_γ =(▽_x,|x|~γ▽_y) and ρ is the distance function.As an application,we get some Hardy type inequalities associated with ▽_γ.展开更多
This paper deals with vanishing results for Lf^2 harmonic p-forms on complete metric measure spaces with a weighted p-Poincare inequality.Some results are without curvature assumptions for 1■p■n-1 and the others are...This paper deals with vanishing results for Lf^2 harmonic p-forms on complete metric measure spaces with a weighted p-Poincare inequality.Some results are without curvature assumptions for 1■p■n-1 and the others are with assumptions on lower bound of the m-Bakry-Emery Ricci curvature for p=1.These are weighted version for the corresponding results of the present author(J.Math.Anal.Appl.,2020,490).展开更多
In this paper, the authors consider the weighted estimates for the commutators of multilinear Calderón-Zygmund operators.By introducing an operator which shifts the commutation, and establishing the weighted esti...In this paper, the authors consider the weighted estimates for the commutators of multilinear Calderón-Zygmund operators.By introducing an operator which shifts the commutation, and establishing the weighted estimates for this new operator, the authors prove that, if p_1 ∈ (1,∞), p_2,…,p_m ∈(1,∞], p ∈ (0,∞) with 1/p =Σ1≤k≤ m 1/pk, then for any weight w, the commutators of m-linear Galderón-Zygmund operator are bounded from L P1(R n,M_l(logL) σw)× p2(Rn,M~w)×...×Lpm(Rn,Mw) to Lp(Rn,w)with σ to be a constant depending only on p_1 and the order of commutator展开更多
The aim of this paper is to establish several necessary and sufficient conditions in order that the weighted inequality ρ(M f 〉 λ)Φ(λ) ≤ C ∫_Ω~Ψ (C|f|)σdμ,λ 〉 0 or ρ(Mf〉λ) ≤ C∫-Ω~Φ(Cλ^...The aim of this paper is to establish several necessary and sufficient conditions in order that the weighted inequality ρ(M f 〉 λ)Φ(λ) ≤ C ∫_Ω~Ψ (C|f|)σdμ,λ 〉 0 or ρ(Mf〉λ) ≤ C∫-Ω~Φ(Cλ^-1 |f|)σdμ,λ 〉0 holds for every uniformly integral martingale f=(f_n), where M is the Doob's maximal operator, Φ, Ψ are both Φ-functions, and e, σ are weights.展开更多
In this article the authors introduce the minimal operator on martingale spaces, discuss some one-weight and two-weight inequalities for the minimal operator and characterize the conditions which make the inequalities...In this article the authors introduce the minimal operator on martingale spaces, discuss some one-weight and two-weight inequalities for the minimal operator and characterize the conditions which make the inequalities hold.展开更多
In this article, the authors introduce two operators-geometrical maximal operator Mo and the closely related limiting operator M0^*, then they give sufficient conditions under which the equality M0=MM0^* holds, and ...In this article, the authors introduce two operators-geometrical maximal operator Mo and the closely related limiting operator M0^*, then they give sufficient conditions under which the equality M0=MM0^* holds, and characterize the equivalent relations between the weak or strong type weighted inequality and the property of W∞-weight or W∞^*-weight for the geometrical maximal operator in the case of two-weight condition. What should be mentioned is that the new operator-the geometrical minimal operator is equal to the limitation of the minimal operator sequence, and the results for the minimal operator proved in [12] makes the proof elegant and evident.展开更多
In this article, some necessary and sufficient conditions are shown in order that weighted inequality of the form ■holds a.e. for uniformly integrable martingales f =(f_n)n≥0 with some constant C > 0,where Φ_1,...In this article, some necessary and sufficient conditions are shown in order that weighted inequality of the form ■holds a.e. for uniformly integrable martingales f =(f_n)n≥0 with some constant C > 0,where Φ_1,Φ_2 are Young functions, w_i(i = 1,2,3, 4) are weights, f~* =sup n≥0 |f_n| and f_∞=lim n→∞ f_n a.e. As an application, two-weight weak type maximal inequalities of martingales are considered, and particularly a new equivalence condition is presented.展开更多
The weighted Poincare inequalities in weighted Sobolev spaces are discussed, and the necessary and sufficient conditions for them to hold are given. That is, the Poincare inequalities hold if, and only if, the ball me...The weighted Poincare inequalities in weighted Sobolev spaces are discussed, and the necessary and sufficient conditions for them to hold are given. That is, the Poincare inequalities hold if, and only if, the ball measure of non-compactness of the natural embedding of weighted Sobolev spaces is less than 1.展开更多
In account of the famous Cebysev inequality, a rich theory has appeared in the literature. We establish some new weighted Cebysev type integral inequalities. Our proofs are of independent interest and provide new esti...In account of the famous Cebysev inequality, a rich theory has appeared in the literature. We establish some new weighted Cebysev type integral inequalities. Our proofs are of independent interest and provide new estimates on these types of inequalities.展开更多
Let Hn be the set of real algebraic polynomials of degree n, whose zeros all lie in the interval [-1,1]. The well known Turán type inequalities tell us that forf(x)∈Hn, it holds ‖f'‖≥C√n‖f‖. This note d...Let Hn be the set of real algebraic polynomials of degree n, whose zeros all lie in the interval [-1,1]. The well known Turán type inequalities tell us that forf(x)∈Hn, it holds ‖f'‖≥C√n‖f‖. This note deals with the weighted Turán type inequalities with the weights having inner singularities under L^p norm for 0〈p≤∞. Our results essentially extend the result of Wang and Zhou (2002), and the method used in this paper is simpler and more direct than that of Wang and Zhou (2002). The results and methods have their own values in approximation theory and computation.展开更多
In this paper.a characterizationis,obtained for those pairs of weight funetions on (0=∞) for which the Hardy operator Pf(x)=f(t)dt is bounded from (μ) to ,0<q<1<p <+∞.
In this paper, an efficient weight initialization method is proposed using Cauchy’s inequality based on sensitivity analy- sis to improve the convergence speed in single hidden layer feedforward neural networks. The ...In this paper, an efficient weight initialization method is proposed using Cauchy’s inequality based on sensitivity analy- sis to improve the convergence speed in single hidden layer feedforward neural networks. The proposed method ensures that the outputs of hidden neurons are in the active region which increases the rate of convergence. Also the weights are learned by minimizing the sum of squared errors and obtained by solving linear system of equations. The proposed method is simulated on various problems. In all the problems the number of epochs and time required for the proposed method is found to be minimum compared with other weight initialization methods.展开更多
In the last years, the theory of integral inequalities are playing a very significant role in all fields of mathematics, many monographs have been devoted to this subject and present a very active and attractive field...In the last years, the theory of integral inequalities are playing a very significant role in all fields of mathematics, many monographs have been devoted to this subject and present a very active and attractive field of research, the applications of integral inequalities have known a great development in many branches of mathematics in statistics, differential equations and numerical integration, The aim of this paper is to establish new extension of the weighted montgomery identity for double integrals then used it to establish new t^eby^evtype inequalities.展开更多
The author derives a kind of weighted norm inequalities which relate the multilinear potential type integral operators to the corresponding maximal operators.
In this article, some necessary and sufficient conditions are shown in order that the inequality of the form Ф1(λ)Pu(f^*〉λ)≤Ev (Ф2(C|f∞|)) holds with some constant C 〉 0 independent of martingale f...In this article, some necessary and sufficient conditions are shown in order that the inequality of the form Ф1(λ)Pu(f^*〉λ)≤Ev (Ф2(C|f∞|)) holds with some constant C 〉 0 independent of martingale f = (fn)n≥0 and λ 〉 0, where Фl and Ф2 are a pair of Young functions, f^*=sup n≥0|fn| adn f∞=lim n→∞ fn a.e.展开更多
基金supported by the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the National Natural Science Foundation of China(12071431)+1 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.
基金Project supported by National Natural Science Foundation of China (Grant No. 10271071)
文摘Tarnavas established mixed weighted power mean inequality in 1999. A separation of weighted power mean inequslity was derived in this paper. As its applications, some separations of other inequalities were given.
基金Foundation item:the Education Commission of Shandong Province(J98P51)
文摘The theta (t)-type oscillatory singular integral operators has been discussed. With the non-negative locally integrable weighted function, the weighted norm inequality of theta ( t) -type oscillatory singular integral operators is proved, and the weighted function has replaced by action of Hardy-Littlewood maximal operators several times.
文摘The best constant of discrete Sobolev inequality on the truncated tetrahedron with a weight which describes 2 kinds of spring constants or bond distances. Main results coincides with the ones of known results by Kametaka et al. under the assumption of uniformity of the spring constants. Since the buckyball fullerene C60 has 2 kinds of edges, destruction of uniformity makes us proceed the application to the chemistry of fullerenes.
基金Supported by the National Natural Science Foundation of China(11871436)。
文摘Here we consider some weighted logarithmic Sobolev inequalities which can be used in the theory of singular Riemanian manifolds.We give the necessary and sufficient conditions such that the 1-dimension weighted logarithmic Sobolev inequality is true and obtain a new estimate on the entropy.
基金Foundation item: Supported by the Natural Science Foundation of Zhejiang Province(Y6090359, Y6090383) Supported by the Department of Education of Zhejiang Province(Z200803357)
文摘In this paper we obtain the fundamental solution for a class of weighted BaouendiGrushin type operator L_(p,γ,α)u = ▽_γ·(|▽_γu|^(p-2)ρ~α▽_γu) on R^(m+n )with singularity at the origin,where ▽_γ is the gradient operator defined by ▽_γ =(▽_x,|x|~γ▽_y) and ρ is the distance function.As an application,we get some Hardy type inequalities associated with ▽_γ.
基金Partially supported by National Science Foundation of China(11426195,11771377)Natural Science Foundation of Jiangsu Province(BK20191435)。
文摘This paper deals with vanishing results for Lf^2 harmonic p-forms on complete metric measure spaces with a weighted p-Poincare inequality.Some results are without curvature assumptions for 1■p■n-1 and the others are with assumptions on lower bound of the m-Bakry-Emery Ricci curvature for p=1.These are weighted version for the corresponding results of the present author(J.Math.Anal.Appl.,2020,490).
基金This research was supported by the NSFC (10971228).
文摘In this paper, the authors consider the weighted estimates for the commutators of multilinear Calderón-Zygmund operators.By introducing an operator which shifts the commutation, and establishing the weighted estimates for this new operator, the authors prove that, if p_1 ∈ (1,∞), p_2,…,p_m ∈(1,∞], p ∈ (0,∞) with 1/p =Σ1≤k≤ m 1/pk, then for any weight w, the commutators of m-linear Galderón-Zygmund operator are bounded from L P1(R n,M_l(logL) σw)× p2(Rn,M~w)×...×Lpm(Rn,Mw) to Lp(Rn,w)with σ to be a constant depending only on p_1 and the order of commutator
基金Supported by the National Natural Science Foundation of China (1067114711071190)
文摘The aim of this paper is to establish several necessary and sufficient conditions in order that the weighted inequality ρ(M f 〉 λ)Φ(λ) ≤ C ∫_Ω~Ψ (C|f|)σdμ,λ 〉 0 or ρ(Mf〉λ) ≤ C∫-Ω~Φ(Cλ^-1 |f|)σdμ,λ 〉0 holds for every uniformly integral martingale f=(f_n), where M is the Doob's maximal operator, Φ, Ψ are both Φ-functions, and e, σ are weights.
基金This work was supported by the NSF of China and the aid financial plan for the backbone of the young teachers of University of Henan
文摘In this article the authors introduce the minimal operator on martingale spaces, discuss some one-weight and two-weight inequalities for the minimal operator and characterize the conditions which make the inequalities hold.
基金supported by the NSF of China and the aid financial plan for the backbone of the young teachers of university of Henan
文摘In this article, the authors introduce two operators-geometrical maximal operator Mo and the closely related limiting operator M0^*, then they give sufficient conditions under which the equality M0=MM0^* holds, and characterize the equivalent relations between the weak or strong type weighted inequality and the property of W∞-weight or W∞^*-weight for the geometrical maximal operator in the case of two-weight condition. What should be mentioned is that the new operator-the geometrical minimal operator is equal to the limitation of the minimal operator sequence, and the results for the minimal operator proved in [12] makes the proof elegant and evident.
基金Supported by the National Natural Science Foundation of China(11871195)
文摘In this article, some necessary and sufficient conditions are shown in order that weighted inequality of the form ■holds a.e. for uniformly integrable martingales f =(f_n)n≥0 with some constant C > 0,where Φ_1,Φ_2 are Young functions, w_i(i = 1,2,3, 4) are weights, f~* =sup n≥0 |f_n| and f_∞=lim n→∞ f_n a.e. As an application, two-weight weak type maximal inequalities of martingales are considered, and particularly a new equivalence condition is presented.
基金Project supported by the National Natural Science Foundation of China(Nos.10261004 and 10461006)the Visiting Scholar Foundation of Key Laboratory of University and the Natural Science Foundation of the Inner Mongolia Autonomous Region of China(No.200408020104)
文摘The weighted Poincare inequalities in weighted Sobolev spaces are discussed, and the necessary and sufficient conditions for them to hold are given. That is, the Poincare inequalities hold if, and only if, the ball measure of non-compactness of the natural embedding of weighted Sobolev spaces is less than 1.
文摘In account of the famous Cebysev inequality, a rich theory has appeared in the literature. We establish some new weighted Cebysev type integral inequalities. Our proofs are of independent interest and provide new estimates on these types of inequalities.
文摘Let Hn be the set of real algebraic polynomials of degree n, whose zeros all lie in the interval [-1,1]. The well known Turán type inequalities tell us that forf(x)∈Hn, it holds ‖f'‖≥C√n‖f‖. This note deals with the weighted Turán type inequalities with the weights having inner singularities under L^p norm for 0〈p≤∞. Our results essentially extend the result of Wang and Zhou (2002), and the method used in this paper is simpler and more direct than that of Wang and Zhou (2002). The results and methods have their own values in approximation theory and computation.
文摘In this paper.a characterizationis,obtained for those pairs of weight funetions on (0=∞) for which the Hardy operator Pf(x)=f(t)dt is bounded from (μ) to ,0<q<1<p <+∞.
文摘In this paper, an efficient weight initialization method is proposed using Cauchy’s inequality based on sensitivity analy- sis to improve the convergence speed in single hidden layer feedforward neural networks. The proposed method ensures that the outputs of hidden neurons are in the active region which increases the rate of convergence. Also the weights are learned by minimizing the sum of squared errors and obtained by solving linear system of equations. The proposed method is simulated on various problems. In all the problems the number of epochs and time required for the proposed method is found to be minimum compared with other weight initialization methods.
文摘In the last years, the theory of integral inequalities are playing a very significant role in all fields of mathematics, many monographs have been devoted to this subject and present a very active and attractive field of research, the applications of integral inequalities have known a great development in many branches of mathematics in statistics, differential equations and numerical integration, The aim of this paper is to establish new extension of the weighted montgomery identity for double integrals then used it to establish new t^eby^evtype inequalities.
基金Supported by Natural Science Foundation of Hebei Province(A2006000129)
文摘The author derives a kind of weighted norm inequalities which relate the multilinear potential type integral operators to the corresponding maximal operators.
文摘In this article, some necessary and sufficient conditions are shown in order that the inequality of the form Ф1(λ)Pu(f^*〉λ)≤Ev (Ф2(C|f∞|)) holds with some constant C 〉 0 independent of martingale f = (fn)n≥0 and λ 〉 0, where Фl and Ф2 are a pair of Young functions, f^*=sup n≥0|fn| adn f∞=lim n→∞ fn a.e.