The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the compa...The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the comparison between interval numbers is introduced. It is proved that the introduced formula is equivalent to the existing formulae, and also some desired properties of the possibility degree is presented. Secondly, the uncertain OWGA operator is investigated in which the associated weighting parameters cannot be specified, but value ranges can be obtained and the associated aggregated values of an uncertain OWGA operator are known. A linear objective-programming model is established; by solving this model, the associated weights vector of an uncertain OWGA operator can be determined, and also the estimated aggregated values of the alternatives can be obtained. Then the alternatives can be ranked by the comparison of the estimated aggregated values using the possibility degree formula. Finally, a numerical example is given to show the feasibility and effectiveness of the developed method.展开更多
Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their...Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.展开更多
The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability ...The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability and reliability in their decision-making.The PFS is known to address the levels of participation and non-participation.To begin,we introduce the novel concept of a PFZN,which is a hybrid structure of Pythagorean fuzzy sets and the ZN.The PFZN is graded in terms of membership and non-membership,as well as reliability,which provides a strong advice in real-world decision support concerns.The PFZN is a useful tool for dealing with uncertainty in decision-aid problems.The PFZN is a practical way for dealing with such uncertainties in decision-aid problems.The list of aggregation operators:PFZN Einstein weighted averaging and PFZN Einstein weighted geometric,is established under the novel Pythagorean fuzzy ZNs.It is a more precise mathematical instrument for dealing with precision and uncertainty.The core of this research is to develop a numerical algorithmto tackle the uncertainty in real-life problems using PFZNs.To show the applicability and effectiveness of the proposed algorithm,we illustrate the numerical case study related to determining the optimal agricultural field.The main purpose of this work is to describe the extended EDAS approach,then compare the proposed methodology with many other methodologies now in use,and then demonstrate how the suggested methodology may be applied to real-world problems.In addition,the final ranking results that were obtained by the devised techniques weremore efficient and dependable in comparison to the results provided by other methods presented in the literature.展开更多
基金The Technological Innovation Foundation of NanjingForestry University(No.163060033).
文摘The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the comparison between interval numbers is introduced. It is proved that the introduced formula is equivalent to the existing formulae, and also some desired properties of the possibility degree is presented. Secondly, the uncertain OWGA operator is investigated in which the associated weighting parameters cannot be specified, but value ranges can be obtained and the associated aggregated values of an uncertain OWGA operator are known. A linear objective-programming model is established; by solving this model, the associated weights vector of an uncertain OWGA operator can be determined, and also the estimated aggregated values of the alternatives can be obtained. Then the alternatives can be ranked by the comparison of the estimated aggregated values using the possibility degree formula. Finally, a numerical example is given to show the feasibility and effectiveness of the developed method.
基金This study has received funding by the Science and Technology Plan Project of Keqiao District(No.2020KZ58).
文摘Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.
基金This work was partially supported by NSFC Project (Grant No. 11031006, 91130002, 11171281), the Key Project of Scientific Research Fund of Hunan Provincial Science and Technology Department (Grant No. 2011FJ2011), Hunan Provincial Natural Science Foundation of China (Grant No. 12JJ3010).
文摘The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability and reliability in their decision-making.The PFS is known to address the levels of participation and non-participation.To begin,we introduce the novel concept of a PFZN,which is a hybrid structure of Pythagorean fuzzy sets and the ZN.The PFZN is graded in terms of membership and non-membership,as well as reliability,which provides a strong advice in real-world decision support concerns.The PFZN is a useful tool for dealing with uncertainty in decision-aid problems.The PFZN is a practical way for dealing with such uncertainties in decision-aid problems.The list of aggregation operators:PFZN Einstein weighted averaging and PFZN Einstein weighted geometric,is established under the novel Pythagorean fuzzy ZNs.It is a more precise mathematical instrument for dealing with precision and uncertainty.The core of this research is to develop a numerical algorithmto tackle the uncertainty in real-life problems using PFZNs.To show the applicability and effectiveness of the proposed algorithm,we illustrate the numerical case study related to determining the optimal agricultural field.The main purpose of this work is to describe the extended EDAS approach,then compare the proposed methodology with many other methodologies now in use,and then demonstrate how the suggested methodology may be applied to real-world problems.In addition,the final ranking results that were obtained by the devised techniques weremore efficient and dependable in comparison to the results provided by other methods presented in the literature.