Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ...Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.展开更多
Objective This study employs the Geographically and Temporally Weighted Regression(GTWR)model to assess the impact of meteorological elements and imported cases on dengue fever outbreaks,emphasizing the spatial-tempor...Objective This study employs the Geographically and Temporally Weighted Regression(GTWR)model to assess the impact of meteorological elements and imported cases on dengue fever outbreaks,emphasizing the spatial-temporal variability of these factors in border regions.Methods We conducted a descriptive analysis of dengue fever’s temporal-spatial distribution in Yunnan border areas.Utilizing annual data from 2013 to 2019,with each county in the Yunnan border serving as a spatial unit,we constructed a GTWR model to investigate the determinants of dengue fever and their spatio-temporal heterogeneity in this region.Results The GTWR model,proving more effective than Ordinary Least Squares(OLS)analysis,identified significant spatial and temporal heterogeneity in factors influencing dengue fever’s spread along the Yunnan border.Notably,the GTWR model revealed a substantial variation in the relationship between indigenous dengue fever incidence,meteorological variables,and imported cases across different counties.Conclusion In the Yunnan border areas,local dengue incidence is affected by temperature,humidity,precipitation,wind speed,and imported cases,with these factors’influence exhibiting notable spatial and temporal variation.展开更多
This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 t...This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.展开更多
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome th...Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome this issue,we propose a convolutional graph neural network(CGNN)model,which we enhance with multilayer feature fusion and a squeeze-and-excitation block.Additionally,we introduce a spatially balanced mean squared error(SBMSE)loss function to address the imbalanced distribution and spatial variability of meteorological variables.The CGNN is capable of extracting essential spatial features and aggregating them from a global perspective,thereby improving the accuracy of prediction and enhancing the model's generalization ability.Based on the experimental results,CGNN has certain advantages in terms of bias distribution,exhibiting a smaller variance.When it comes to precipitation,both UNet and AE also demonstrate relatively small biases.As for temperature,AE and CNNdense perform outstandingly during the winter.The time correlation coefficients show an improvement of at least 10%at daily and monthly scales for both temperature and precipitation.Furthermore,the SBMSE loss function displays an advantage over existing loss functions in predicting the98th percentile and identifying areas where extreme events occur.However,the SBMSE tends to overestimate the distribution of extreme precipitation,which may be due to the theoretical assumptions about the posterior distribution of data that partially limit the effectiveness of the loss function.In future work,we will further optimize the SBMSE to improve prediction accuracy.展开更多
As the traditional methods and technical means cannot meet the quantitative research needs of the urban land use patterns, quantitative research methods for the urban land use pattern are established via the GIS (geo...As the traditional methods and technical means cannot meet the quantitative research needs of the urban land use patterns, quantitative research methods for the urban land use pattern are established via the GIS (geographic information system ) technique combined with the related theories and models. Taking the city of Nanjing as an example, a spatial database of urban land use and other environmental and socio-economic data is constructed. A multiple linear regression model is developed to determine the statistically significant factors affecting the residential land use distributions. To explain the spatial variations of urban land use patterns, the geographically weighted regression (GWR) is employed to establish spatial associations between these significant factors and the distribution of urban residential land use. The results demonstrate that the GWR can provide an effective approach to the exploration of the urban land use spatial patterns and also provide useful spatial information for planning residential development and other types of urban land use.展开更多
Timed weighted marked graphs are a subclass of timed Petri nets that have wide applications in the control and performance analysis of flexible manufacturing systems.Due to the existence of multiplicities(i.e.,weights...Timed weighted marked graphs are a subclass of timed Petri nets that have wide applications in the control and performance analysis of flexible manufacturing systems.Due to the existence of multiplicities(i.e.,weights)on edges,the performance analysis and resource optimization of such graphs represent a challenging problem.In this paper,we develop an approach to transform a timed weighted marked graph whose initial marking is not given,into an equivalent parametric timed marked graph where the edges have unitary weights.In order to explore an optimal resource allocation policy for a system,an analytical method is developed for the resource optimization of timed weighted marked graphs by studying an equivalent net.Finally,we apply the proposed method to a flexible manufacturing system and compare the results with a previous heuristic approach.Simulation analysis shows that the developed approach is superior to the heuristic approach.展开更多
This paper proposes an algorithm for building weighted directed graph, defmes the weighted directed relationship matrix of the graph, and describes algorithm implementation using this matrix. Based on this algorithm, ...This paper proposes an algorithm for building weighted directed graph, defmes the weighted directed relationship matrix of the graph, and describes algorithm implementation using this matrix. Based on this algorithm, an effective way for building and drawing weighted directed graphs is presented, forming a foundation for visual implementation of the algorithm in the graph theory.展开更多
The maximum weighted matching problem in bipartite graphs is one of the classic combinatorial optimization problems, and arises in many different applications. Ordered binary decision diagram (OBDD) or algebraic decis...The maximum weighted matching problem in bipartite graphs is one of the classic combinatorial optimization problems, and arises in many different applications. Ordered binary decision diagram (OBDD) or algebraic decision diagram (ADD) or variants thereof provides canonical forms to represent and manipulate Boolean functions and pseudo-Boolean functions efficiently. ADD and OBDD-based symbolic algorithms give improved results for large-scale combinatorial optimization problems by searching nodes and edges implicitly. We present novel symbolic ADD formulation and algorithm for maximum weighted matching in bipartite graphs. The symbolic algorithm implements the Hungarian algorithm in the context of ADD and OBDD formulation and manipulations. It begins by setting feasible labelings of nodes and then iterates through a sequence of phases. Each phase is divided into two stages. The first stage is building equality bipartite graphs, and the second one is finding maximum cardinality matching in equality bipartite graph. The second stage iterates through the following steps: greedily searching initial matching, building layered network, backward traversing node-disjoint augmenting paths, updating cardinality matching and building residual network. The symbolic algorithm does not require explicit enumeration of the nodes and edges, and therefore can handle many complex executions in each step. Simulation experiments indicate that symbolic algorithm is competitive with traditional algorithms.展开更多
Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their ...Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.67% for monthly precipitation.展开更多
Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of thi...Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of this study was to evaluate the feasibility of different methods such as artificial neural networks(ANN) and two geostatistical methods(geographically weighted regression(GWR) and cokriging(CK)) to estimate N, P and K contents. For this purpose, soil samples were taken from topsoil(0–30 cm) at 106 points and analyzed for their chemical and physical parameters. These data were divided into calibration(n = 84) and validation(n = 22). Chemical and physical variables including clay, p H and organic carbon(OC) were used as auxiliary soil variables to estimate the N, P and K contents. Results showed that the ANN model(with coefficient of determination R^2 = 0.922 and root mean square error RMSE = 0.0079%) was more accurate compared to the CK model(with R^2 = 0.612 and RMSE = 0.0094%), and the GWR model(with R^2 = 0.872 and RMSE = 0.0089%) to estimate the N variable. The ANN model estimated the P with the RMSE of 3.630 ppm, which was respectively 28.93% and 20.00% less than the RMSE of 4.680 ppm and 4.357 ppm from the CK and GWR models. The estimated K by CK, GWR and ANN models have the RMSE of 76.794 ppm, 75.790 ppm and 52.484 ppm. Results indicated that the performance of the CK model for estimation of macro nutrients(N, P and K) was slightly lower than the GWR model. Also, the accuracy of the ANN model was higher than CK and GWR models, which proved to be more effective and reliable methods for estimating macro nutrients.展开更多
Mobile information and communication technologies(MICTs) have fully penetrated everyday life in smart societies;this has greatly compressed time, space, and distance, and consequently, reshaped residents’ travel beha...Mobile information and communication technologies(MICTs) have fully penetrated everyday life in smart societies;this has greatly compressed time, space, and distance, and consequently, reshaped residents’ travel behaviour patterns. As a new mode of shared mobility, the sharing bicycle offers a variety of options for the daily travel of urban residents. Extant studies have mainly examined the travel characteristics and influencing factors of public bicycles with piles, while the travel patterns for sharing bicycles and their driving mechanisms have been largely ignored. Using one week’s travel data for Mobike, this study investigated the spatial and temporal distribution patterns of sharing bicycle travel behaviours in the central urban area of Guangzhou, China;furthermore, it identified the influences of built environment density factors on sharing bicycle travel behaviours based on the geographically weighted regression method. Obvious morning and evening peaks were observed in the sharing bicycle travel patterns for both weekdays and weekends. The old urban area, which had a high degree of mixed function, dense road networks, and cycling-friendly built environments, was the main travel area that attracted sharing bicycles on both weekdays and weekends. Furthermore, factors including the point of interest(POI) for the density of public transport stations, the functional mixing degree, and the density of residential POIs significantly affected residents’ travel behaviours. These findings could enrich discourse regarding shared mobility with a Chinese case characterised by rapidly developing MICTs and also provide references to local authorities for improving slow traffic environments.展开更多
AIM: To evaluate the feasibility of 3-Tesla magnetic resonance elastography (MRE) for hepatic fibrosis and to compare that with diffusion-weighted imaging (DWI) and gadoxetic acid-enhanced magnetic resonance (MR) imag...AIM: To evaluate the feasibility of 3-Tesla magnetic resonance elastography (MRE) for hepatic fibrosis and to compare that with diffusion-weighted imaging (DWI) and gadoxetic acid-enhanced magnetic resonance (MR) imaging.展开更多
Graph filtering,which is founded on the theory of graph signal processing,is proved as a useful tool for image denoising.Most graph filtering methods focus on learning an ideal lowpass filter to remove noise,where cle...Graph filtering,which is founded on the theory of graph signal processing,is proved as a useful tool for image denoising.Most graph filtering methods focus on learning an ideal lowpass filter to remove noise,where clean images are restored from noisy ones by retaining the image components in low graph frequency bands.However,this lowpass filter has limited ability to separate the low-frequency noise from clean images such that it makes the denoising procedure less effective.To address this issue,we propose an adaptive weighted graph filtering(AWGF)method to replace the design of traditional ideal lowpass filter.In detail,we reassess the existing low-rank denoising method with adaptive regularizer learning(ARLLR)from the view of graph filtering.A shrinkage approach subsequently is presented on the graph frequency domain,where the components of noisy image are adaptively decreased in each band by calculating their component significances.As a result,it makes the proposed graph filtering more explainable and suitable for denoising.Meanwhile,we demonstrate a graph filter under the constraint of subspace representation is employed in the ARLLR method.Therefore,ARLLR can be treated as a special form of graph filtering.It not only enriches the theory of graph filtering,but also builds a bridge from the low-rank methods to the graph filtering methods.In the experiments,we perform the AWGF method with a graph filter generated by the classical graph Laplacian matrix.The results show our method can achieve a comparable denoising performance with several state-of-the-art denoising methods.展开更多
This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source ...This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source data improves the accuracy of the spatial differentiation that reflects the impact of traffic accessibility on house prices. The results are as follows: first, the average house price is 12 436 yuan(RMB)/m^2, and reveals a declining trend from coastal areas to inland areas. The exception was Guilin Street, which demonstrates a local peak of house prices that decreases from the center of the street to its periphery. Second, the accessibility value is 33 minutes on average, excluding northern and eastern fringe areas, which was over 50 minutes. Third, the significant spatial correlation coefficient between accessibility and house prices is 0.423, and the coefficient increases in the southeastern direction. The strongest impact of accessibility on house prices is in the southeastern coast, and can be seen in the Lehua, Yingke, and Hushan communities, while the weakest impact is in the northwestern fringe, and can be seen in the Yingchengzi, Xixiaomo, and Daheishi community areas.展开更多
The notion of w-density for the graphs with positive weights on vertices and nonnegative weights on edges is introduced.A weighted graph is called w-balanced if its w-density is no less than the w-density of any subgr...The notion of w-density for the graphs with positive weights on vertices and nonnegative weights on edges is introduced.A weighted graph is called w-balanced if its w-density is no less than the w-density of any subgraph of it.In this paper,a good characterization of w-balanced weighted graphs is given.Applying this characterization,many large w-balanced weighted graphs are formed by combining smaller ones.In the case where a graph is not w-balanced,a polynomial-time algorithm to find a subgraph of maximum w-density is proposed.It is shown that the w-density theory is closely related to the study of SEW(G,w) games.展开更多
We study the spin squeezing property of weighted graph states,which can be used to improve sensitivity in interferometry.We study the time evolution of spin squeezing under local decoherence acting independently on ea...We study the spin squeezing property of weighted graph states,which can be used to improve sensitivity in interferometry.We study the time evolution of spin squeezing under local decoherence acting independently on each qubit.Based on the analysis,the spin squeezing of the weighted graph states is somehow robust in the presence of decoherence and the decoherence limit in the improvement of the interferometric sensitivity is still achievable.Furthermore,one can obtain the optimal improvement of sensitivity by tuning the weighted of each edges of the weighted graph state.展开更多
Global statistical techniques often assume homogeneity of relationships between dependent variable and predictors across space. This assumption has been criticized by statistical geographers as a fundamental weakness ...Global statistical techniques often assume homogeneity of relationships between dependent variable and predictors across space. This assumption has been criticized by statistical geographers as a fundamental weakness that may yield misleading result when it is applied to dataset with spatial context. To strengthen this weakness, a new method that accounts for heterogeneity in relationships across geographic space has been presented. This is one of the family of local spatial statistical techniques referred to as geographically weighted regression (GWR). The method captures non-stationarity of relationship in spatial data that the ordinary least square (OLS) regression fails to account for. Thus, the paper is designed to explore and analyze the spatial relationships between cholera occurrence and household sources of water supply using GIS-based GWR, also to compare the modeling fitness of OLS and GWR. Vector dataset (spatial) of the study region by state levels and statistical data (non-spatial) on cholera cases, household sources of water supply and population data were used in this exploratory analysis. The result shows that GWR is a significant improvement on the global model. Comparing both models with the AICc value and the R2 value revealed that for the former, the value is reduced from 698.7 (for OLS model) to 691.5 (for GWR model). For the latter, OLS explained 66.4 percent while GWR explained 86.7 percent. This implies that local model’s fitness is higher than global model. In addition, the empirical analysis revealed that cholera occurrence in the study region is significantly associated with household sources of water supply. This relationship, as detected by GWR, largely varies across the region.展开更多
In this paper we give a Dirac type condition for heavy cycles in a 3-connected weighted graph, reading that if d^w(v)≥ d for all v ∈ V(G)/{x} and w(uz) = w(vz), when uz, vz ∈ E(G) and uv ∈/ E(G). Then...In this paper we give a Dirac type condition for heavy cycles in a 3-connected weighted graph, reading that if d^w(v)≥ d for all v ∈ V(G)/{x} and w(uz) = w(vz), when uz, vz ∈ E(G) and uv ∈/ E(G). Then G contains either an (x, y)-cycle of weight at least 2d or a Hamilton cycle.展开更多
基金This work was supported by the Kyonggi University Research Grant 2022.
文摘Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.
基金supported by National Science and Technology Infrastructure Platform National Population and Health Science Data Sharing Service Platform Public Health Science Data Center[NCMI-ZB01N-201905]。
文摘Objective This study employs the Geographically and Temporally Weighted Regression(GTWR)model to assess the impact of meteorological elements and imported cases on dengue fever outbreaks,emphasizing the spatial-temporal variability of these factors in border regions.Methods We conducted a descriptive analysis of dengue fever’s temporal-spatial distribution in Yunnan border areas.Utilizing annual data from 2013 to 2019,with each county in the Yunnan border serving as a spatial unit,we constructed a GTWR model to investigate the determinants of dengue fever and their spatio-temporal heterogeneity in this region.Results The GTWR model,proving more effective than Ordinary Least Squares(OLS)analysis,identified significant spatial and temporal heterogeneity in factors influencing dengue fever’s spread along the Yunnan border.Notably,the GTWR model revealed a substantial variation in the relationship between indigenous dengue fever incidence,meteorological variables,and imported cases across different counties.Conclusion In the Yunnan border areas,local dengue incidence is affected by temperature,humidity,precipitation,wind speed,and imported cases,with these factors’influence exhibiting notable spatial and temporal variation.
文摘This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
基金partially funded by the National Natural Science Foundation of China(U2142205)the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)+1 种基金the Special Fund for Forecasters of China Meteorological Administration(CMAYBY2020-094)the Graduate Student Research and Innovation Program of Central South University(2023ZZTS0347)。
文摘Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome this issue,we propose a convolutional graph neural network(CGNN)model,which we enhance with multilayer feature fusion and a squeeze-and-excitation block.Additionally,we introduce a spatially balanced mean squared error(SBMSE)loss function to address the imbalanced distribution and spatial variability of meteorological variables.The CGNN is capable of extracting essential spatial features and aggregating them from a global perspective,thereby improving the accuracy of prediction and enhancing the model's generalization ability.Based on the experimental results,CGNN has certain advantages in terms of bias distribution,exhibiting a smaller variance.When it comes to precipitation,both UNet and AE also demonstrate relatively small biases.As for temperature,AE and CNNdense perform outstandingly during the winter.The time correlation coefficients show an improvement of at least 10%at daily and monthly scales for both temperature and precipitation.Furthermore,the SBMSE loss function displays an advantage over existing loss functions in predicting the98th percentile and identifying areas where extreme events occur.However,the SBMSE tends to overestimate the distribution of extreme precipitation,which may be due to the theoretical assumptions about the posterior distribution of data that partially limit the effectiveness of the loss function.In future work,we will further optimize the SBMSE to improve prediction accuracy.
基金The National Natural Science Foundation of China(No.51378099)
文摘As the traditional methods and technical means cannot meet the quantitative research needs of the urban land use patterns, quantitative research methods for the urban land use pattern are established via the GIS (geographic information system ) technique combined with the related theories and models. Taking the city of Nanjing as an example, a spatial database of urban land use and other environmental and socio-economic data is constructed. A multiple linear regression model is developed to determine the statistically significant factors affecting the residential land use distributions. To explain the spatial variations of urban land use patterns, the geographically weighted regression (GWR) is employed to establish spatial associations between these significant factors and the distribution of urban residential land use. The results demonstrate that the GWR can provide an effective approach to the exploration of the urban land use spatial patterns and also provide useful spatial information for planning residential development and other types of urban land use.
基金supported by the National Natural Science Foundation of China(61803246,61703321)the China Postdoctoral Science Foundation(2019M663608)+2 种基金Shaanxi Provincial Natural Science Foundation(2019JQ-022,2020JQ-733)the Fundamental Research Funds for the Central Universities(JB190407)the Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing,Xi’an University of Technology(SKL2020CP03)。
文摘Timed weighted marked graphs are a subclass of timed Petri nets that have wide applications in the control and performance analysis of flexible manufacturing systems.Due to the existence of multiplicities(i.e.,weights)on edges,the performance analysis and resource optimization of such graphs represent a challenging problem.In this paper,we develop an approach to transform a timed weighted marked graph whose initial marking is not given,into an equivalent parametric timed marked graph where the edges have unitary weights.In order to explore an optimal resource allocation policy for a system,an analytical method is developed for the resource optimization of timed weighted marked graphs by studying an equivalent net.Finally,we apply the proposed method to a flexible manufacturing system and compare the results with a previous heuristic approach.Simulation analysis shows that the developed approach is superior to the heuristic approach.
基金Project supported by Science Foundation of Shanghai MunicipalConmission of Education (Grant No .03A203)
文摘This paper proposes an algorithm for building weighted directed graph, defmes the weighted directed relationship matrix of the graph, and describes algorithm implementation using this matrix. Based on this algorithm, an effective way for building and drawing weighted directed graphs is presented, forming a foundation for visual implementation of the algorithm in the graph theory.
文摘The maximum weighted matching problem in bipartite graphs is one of the classic combinatorial optimization problems, and arises in many different applications. Ordered binary decision diagram (OBDD) or algebraic decision diagram (ADD) or variants thereof provides canonical forms to represent and manipulate Boolean functions and pseudo-Boolean functions efficiently. ADD and OBDD-based symbolic algorithms give improved results for large-scale combinatorial optimization problems by searching nodes and edges implicitly. We present novel symbolic ADD formulation and algorithm for maximum weighted matching in bipartite graphs. The symbolic algorithm implements the Hungarian algorithm in the context of ADD and OBDD formulation and manipulations. It begins by setting feasible labelings of nodes and then iterates through a sequence of phases. Each phase is divided into two stages. The first stage is building equality bipartite graphs, and the second one is finding maximum cardinality matching in equality bipartite graph. The second stage iterates through the following steps: greedily searching initial matching, building layered network, backward traversing node-disjoint augmenting paths, updating cardinality matching and building residual network. The symbolic algorithm does not require explicit enumeration of the nodes and edges, and therefore can handle many complex executions in each step. Simulation experiments indicate that symbolic algorithm is competitive with traditional algorithms.
基金Under the auspices of the National Natural Science Foundation of China(No.41661099)the National Key Research and Development Program of China(No.Grant 2016YFA0601601)
文摘Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.67% for monthly precipitation.
基金Foundation item:Under the auspices of Shahrood University of Technology,Iran(No.348517)
文摘Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of this study was to evaluate the feasibility of different methods such as artificial neural networks(ANN) and two geostatistical methods(geographically weighted regression(GWR) and cokriging(CK)) to estimate N, P and K contents. For this purpose, soil samples were taken from topsoil(0–30 cm) at 106 points and analyzed for their chemical and physical parameters. These data were divided into calibration(n = 84) and validation(n = 22). Chemical and physical variables including clay, p H and organic carbon(OC) were used as auxiliary soil variables to estimate the N, P and K contents. Results showed that the ANN model(with coefficient of determination R^2 = 0.922 and root mean square error RMSE = 0.0079%) was more accurate compared to the CK model(with R^2 = 0.612 and RMSE = 0.0094%), and the GWR model(with R^2 = 0.872 and RMSE = 0.0089%) to estimate the N variable. The ANN model estimated the P with the RMSE of 3.630 ppm, which was respectively 28.93% and 20.00% less than the RMSE of 4.680 ppm and 4.357 ppm from the CK and GWR models. The estimated K by CK, GWR and ANN models have the RMSE of 76.794 ppm, 75.790 ppm and 52.484 ppm. Results indicated that the performance of the CK model for estimation of macro nutrients(N, P and K) was slightly lower than the GWR model. Also, the accuracy of the ANN model was higher than CK and GWR models, which proved to be more effective and reliable methods for estimating macro nutrients.
基金Under the auspices of National Natural Science Foundation of China(No.41801150,41571146,41801144)Natural Science Foundation of Guangdong Province(No.2018A030310392)+2 种基金Guangdong Planning Project of Philosophy and Social Science(No.GD17YGL01)Science and Technology Program of Guangzhou(No.201906010033)GDAS’(Guangdong Academy of Sciences)Project of Science and Technology Development(No.2020GDASYL-20200104007)。
文摘Mobile information and communication technologies(MICTs) have fully penetrated everyday life in smart societies;this has greatly compressed time, space, and distance, and consequently, reshaped residents’ travel behaviour patterns. As a new mode of shared mobility, the sharing bicycle offers a variety of options for the daily travel of urban residents. Extant studies have mainly examined the travel characteristics and influencing factors of public bicycles with piles, while the travel patterns for sharing bicycles and their driving mechanisms have been largely ignored. Using one week’s travel data for Mobike, this study investigated the spatial and temporal distribution patterns of sharing bicycle travel behaviours in the central urban area of Guangzhou, China;furthermore, it identified the influences of built environment density factors on sharing bicycle travel behaviours based on the geographically weighted regression method. Obvious morning and evening peaks were observed in the sharing bicycle travel patterns for both weekdays and weekends. The old urban area, which had a high degree of mixed function, dense road networks, and cycling-friendly built environments, was the main travel area that attracted sharing bicycles on both weekdays and weekends. Furthermore, factors including the point of interest(POI) for the density of public transport stations, the functional mixing degree, and the density of residential POIs significantly affected residents’ travel behaviours. These findings could enrich discourse regarding shared mobility with a Chinese case characterised by rapidly developing MICTs and also provide references to local authorities for improving slow traffic environments.
文摘AIM: To evaluate the feasibility of 3-Tesla magnetic resonance elastography (MRE) for hepatic fibrosis and to compare that with diffusion-weighted imaging (DWI) and gadoxetic acid-enhanced magnetic resonance (MR) imaging.
基金This work is supported by National Natural Science Foundation of China[61673108,41706103]The initials of authors who received these grants are LZ and YZ,respectively.It is also supported by Natural Science Foundation of Jiangsu Province,China[BK20170306]The initials of author who received this grant are YZ.
文摘Graph filtering,which is founded on the theory of graph signal processing,is proved as a useful tool for image denoising.Most graph filtering methods focus on learning an ideal lowpass filter to remove noise,where clean images are restored from noisy ones by retaining the image components in low graph frequency bands.However,this lowpass filter has limited ability to separate the low-frequency noise from clean images such that it makes the denoising procedure less effective.To address this issue,we propose an adaptive weighted graph filtering(AWGF)method to replace the design of traditional ideal lowpass filter.In detail,we reassess the existing low-rank denoising method with adaptive regularizer learning(ARLLR)from the view of graph filtering.A shrinkage approach subsequently is presented on the graph frequency domain,where the components of noisy image are adaptively decreased in each band by calculating their component significances.As a result,it makes the proposed graph filtering more explainable and suitable for denoising.Meanwhile,we demonstrate a graph filter under the constraint of subspace representation is employed in the ARLLR method.Therefore,ARLLR can be treated as a special form of graph filtering.It not only enriches the theory of graph filtering,but also builds a bridge from the low-rank methods to the graph filtering methods.In the experiments,we perform the AWGF method with a graph filter generated by the classical graph Laplacian matrix.The results show our method can achieve a comparable denoising performance with several state-of-the-art denoising methods.
基金Under the auspices of National Natural Science Foundation of China(No.41471140,41771178)Liaoning Province Outstanding Youth Program(No.LJQ2015058)
文摘This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source data improves the accuracy of the spatial differentiation that reflects the impact of traffic accessibility on house prices. The results are as follows: first, the average house price is 12 436 yuan(RMB)/m^2, and reveals a declining trend from coastal areas to inland areas. The exception was Guilin Street, which demonstrates a local peak of house prices that decreases from the center of the street to its periphery. Second, the accessibility value is 33 minutes on average, excluding northern and eastern fringe areas, which was over 50 minutes. Third, the significant spatial correlation coefficient between accessibility and house prices is 0.423, and the coefficient increases in the southeastern direction. The strongest impact of accessibility on house prices is in the southeastern coast, and can be seen in the Lehua, Yingke, and Hushan communities, while the weakest impact is in the northwestern fringe, and can be seen in the Yingchengzi, Xixiaomo, and Daheishi community areas.
文摘The notion of w-density for the graphs with positive weights on vertices and nonnegative weights on edges is introduced.A weighted graph is called w-balanced if its w-density is no less than the w-density of any subgraph of it.In this paper,a good characterization of w-balanced weighted graphs is given.Applying this characterization,many large w-balanced weighted graphs are formed by combining smaller ones.In the case where a graph is not w-balanced,a polynomial-time algorithm to find a subgraph of maximum w-density is proposed.It is shown that the w-density theory is closely related to the study of SEW(G,w) games.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11004029 and 11174052)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2010422)+2 种基金the Ph. D. Program of the Ministry of Education of Chinathe Excellent Young Teachers Program of Southeast Universitythe National Basic Research Development Program of China(Grant No. 2011CB921203)
文摘We study the spin squeezing property of weighted graph states,which can be used to improve sensitivity in interferometry.We study the time evolution of spin squeezing under local decoherence acting independently on each qubit.Based on the analysis,the spin squeezing of the weighted graph states is somehow robust in the presence of decoherence and the decoherence limit in the improvement of the interferometric sensitivity is still achievable.Furthermore,one can obtain the optimal improvement of sensitivity by tuning the weighted of each edges of the weighted graph state.
文摘Global statistical techniques often assume homogeneity of relationships between dependent variable and predictors across space. This assumption has been criticized by statistical geographers as a fundamental weakness that may yield misleading result when it is applied to dataset with spatial context. To strengthen this weakness, a new method that accounts for heterogeneity in relationships across geographic space has been presented. This is one of the family of local spatial statistical techniques referred to as geographically weighted regression (GWR). The method captures non-stationarity of relationship in spatial data that the ordinary least square (OLS) regression fails to account for. Thus, the paper is designed to explore and analyze the spatial relationships between cholera occurrence and household sources of water supply using GIS-based GWR, also to compare the modeling fitness of OLS and GWR. Vector dataset (spatial) of the study region by state levels and statistical data (non-spatial) on cholera cases, household sources of water supply and population data were used in this exploratory analysis. The result shows that GWR is a significant improvement on the global model. Comparing both models with the AICc value and the R2 value revealed that for the former, the value is reduced from 698.7 (for OLS model) to 691.5 (for GWR model). For the latter, OLS explained 66.4 percent while GWR explained 86.7 percent. This implies that local model’s fitness is higher than global model. In addition, the empirical analysis revealed that cholera occurrence in the study region is significantly associated with household sources of water supply. This relationship, as detected by GWR, largely varies across the region.
文摘In this paper we give a Dirac type condition for heavy cycles in a 3-connected weighted graph, reading that if d^w(v)≥ d for all v ∈ V(G)/{x} and w(uz) = w(vz), when uz, vz ∈ E(G) and uv ∈/ E(G). Then G contains either an (x, y)-cycle of weight at least 2d or a Hamilton cycle.