The paper presents the simulation results of the comparison of three Queuing Mechanisms, First in First out (FIFO), Priority Queuing (PQ), and Weighted Fair Queuing (WFQ). Depending on their effects on the network’s ...The paper presents the simulation results of the comparison of three Queuing Mechanisms, First in First out (FIFO), Priority Queuing (PQ), and Weighted Fair Queuing (WFQ). Depending on their effects on the network’s Routers, the load of any algorithm of them over Router’s CPUs and memory usage, the delay occurred between routers when any algorithm has been used and the network application throughput. This comparison explains that, PQ doesn’t need high specification hardware (memory and CPU) but when used it is not fair, because it serves one application and ignore the other application and FIFO mechanism has smaller queuing delay, otherwise PQ has bigger delay.展开更多
This paper investigates the resource scheduling for heterogeneous vehicular networks, where some moving vehicles are selected and scheduled as helping relays to assist information transmission between the roadside inf...This paper investigates the resource scheduling for heterogeneous vehicular networks, where some moving vehicles are selected and scheduled as helping relays to assist information transmission between the roadside infrastructure and other moving vehicles. For such a system, we propose a mobile-service based max-min fairness resource scheduling scheme, where service amount which is more suitable for high mobility scenarios is adopted to characterize the information transmission capacity of the links and the max-min criteria is adopted to meet the fairness requirement of the moving vehicles. Simulation results demonstrate the effectiveness of our proposed scheme. It is shown that our proposed scheme archives higher throughput and better fairness compared with random scheduling scheme and non-relaying scheme.展开更多
Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from t...Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from the BS is poor in general. This renders the fairness among users a challenging issue for maritime communications. In this paper, we consider a practical massive MIMO maritime BS with hybrid digital and analog precoding. Only the large-scale channel state information at the transmitter(CSIT) is considered so as to reduce the implementation complexity and overhead of the system. On this basis, we address the problem of fairness-oriented precoding design. A max-min optimization problem is formulated and solved in an iterative way. Simulation results demonstrate that the proposed scheme performs much better than conventional hybrid precoding algorithms in terms of minimum achievable rate of all the users, for the typical three-ray maritime channel model.展开更多
Resource allocation is crucial for satellite networks. In this paper, we propose a multi-resource fair allocation scheme, namely Dominant and Max-min Fair(DMMF), to efficiently and fairly allocate resources. It consis...Resource allocation is crucial for satellite networks. In this paper, we propose a multi-resource fair allocation scheme, namely Dominant and Max-min Fair(DMMF), to efficiently and fairly allocate resources. It consists of two allocation stages, dominant resource fair(DRF) allocation stage and max-min fairness(MMF) allocation stage. The proposed DMMF scheme exhibits desirable properties, including share incentive, strategy proofness, envy freeness and Pareto optimality. Meanwhile, DMMF can improve the allocation efficiency and reach 100% allocation efficiency.展开更多
Rate-splitting multiple access(RSMA)can cope with a wide range of propagation conditions in multigroup multicast communications through rate splitting optimization.To breakthrough the grouprate limited bottleneck,reco...Rate-splitting multiple access(RSMA)can cope with a wide range of propagation conditions in multigroup multicast communications through rate splitting optimization.To breakthrough the grouprate limited bottleneck,reconfigurable intelligent surface(RIS)technique can be introduced to assist wireless communications through enhancing the channel quality.In RIS-aided RSMA multigroup multicasting,how to provide fair and high-quality multiuser service under power and spectrum constraints is essential.In this paper,we propose a max-min fair RIS-aided rate-splitting multiple access(MMF-RISRSMA)scheme for multigroup multicast communications,where the rate fairness is obtained by maximizing the minimum group-rate.In doing so,we jointly optimize the beamformers,the rate splitting vector at the transmitter,as well as the phase shifts at RIS.To solve it,we divide the original optimization problem into two subproblems and alternately optimize the variables.The beamforming and rate splitting optimization subproblem is solved by using the successive convex approximation technique.The phase shift optimization subproblem is solved through the penalty function method to achieve a rank-one locally optimal solution.Simulations demonstrate that the proposed MMF-RIS-RSMA scheme can obtain significant performance gain in terms of the minimum group-rate.展开更多
All ABR congestion control algorithms reported are designed to achieve max-min fairness. In this paper, a new algorithm named dynamic bandwidth allocation algorithm is presented. Under the same framework, the algorith...All ABR congestion control algorithms reported are designed to achieve max-min fairness. In this paper, a new algorithm named dynamic bandwidth allocation algorithm is presented. Under the same framework, the algorithm can achieve fairness under several given criteria. Simulation result shows that the new algorithm works well under various network configurations, various traffic classes, and scale well to LANs or WANs.展开更多
Considering the exponential growth of wireless devices with datastarving applications fused with artificial intelligence,the significance of wireless network scalability using distributed behavior and fairness among u...Considering the exponential growth of wireless devices with datastarving applications fused with artificial intelligence,the significance of wireless network scalability using distributed behavior and fairness among users is a crucial feature in guaranteeing reliable service to numerous users in the network environment.TheKuramoto model is described as nonlinear selfsustained phase oscillators spinning at varying intrinsic frequencies connected through the sine of their phase differences and displays a phase transition at a specific coupling strength,in which a mutual behavior is accomplished.In this work,we apply the Kuramoto model to achieve a weighted fair resource allocation in a wireless network,where each user has different quality of service(QoS)requirements.Because the original Kuramoto model is the synchronization model,we propose a new weighting parameter for representing requirement of each node resource and modify the Kuramoto model to achieveweighted fair resource allocation for users with different QoS requirements.The proposed modified Kuramoto model allocates all users the resource based on their weight among contending nodes in a distributed manner.We analyze the convergence condition for the proposed model,and the results reveal that the proposed algorithm achieves aweighted fair resource allocation and with potentially high convergence speed compared to previous algorithm.展开更多
为了得到既有较强抗差性又有较高效率的估值,提出一种基于F a ir函数的抗差状态估计算法。抗差最小二乘估计通过等价权把抗差估计原理与加权最小二乘(W LS)形式有机结合起来,提出了将F a ir函数通过等价权应用于抗差估计,使抗差和状态...为了得到既有较强抗差性又有较高效率的估值,提出一种基于F a ir函数的抗差状态估计算法。抗差最小二乘估计通过等价权把抗差估计原理与加权最小二乘(W LS)形式有机结合起来,提出了将F a ir函数通过等价权应用于抗差估计,使抗差和状态估计在计算中一次完成。仿真算例表明,该方法可以有效减小或消除粗差的影响,收敛速度快。展开更多
As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we...As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we consider a multiuser multiple-input single-output(MISO)wireless power transfer(WPT)system,which is assisted by several RISs.In order to improve energy efficiency and reduce hardware cost,we consider that the energy transmitter(ET)in the WPT system is equipped with a constant-envelope analog beamformer,instead of a digital beamformer.Focusing on user fairness,we study a minimum received power maximization problem by jointly optimizing the ET beamforming and the RIS phase shifts,subject to the constant-envelope constraints.We iteratively solve this non-convex maxmin problem by leveraging both the successive convex approximation(SCA)method and the alternating direction method of multipliers(ADMM)algorithm.Numerical results demonstrate the effectiveness of the proposed algorithm and show attractive performance gain brought by RISs.展开更多
In order to get the price of a contingent claim with random interval payoff, a concept of fair price was proposed based on weighted expected utility maximization. After setting up a programming model of maximizing the...In order to get the price of a contingent claim with random interval payoff, a concept of fair price was proposed based on weighted expected utility maximization. After setting up a programming model of maximizing the weighted expected utility involving basic securities and contingent claim,and using techniques in optimization analysis,explicit expressions of the fair price interval for a contingent claim were derived. Relations between acceptable price interval and fair price interval were discussed. It is shown that all fair prices fit the demand for acceptability of a market.展开更多
A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packe...A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packet-based calculation of the weight parameters. In addition, this paper proposes a novel service ratio calculation method and a queue mangement technology. The former adjusts the service ratio parameters adaptively based on the dynamics of the packet lengths and thee solves the unfairness problem induced by the variable packet length. The latter improves the utilization of the server's queue buffer and reduces the delay jitter through restricting the buffer length for each flow.展开更多
在基于非正交多址接入技术的多用户下行室内可见光通信(Visible light communication system based on non⁃orthogonal multiple access technology,VLC⁃NOMA)系统中,针对和速率与用户公平性冲突的问题,提出一种基于加权和速率最大化的...在基于非正交多址接入技术的多用户下行室内可见光通信(Visible light communication system based on non⁃orthogonal multiple access technology,VLC⁃NOMA)系统中,针对和速率与用户公平性冲突的问题,提出一种基于加权和速率最大化的迭代功率分配方案。该方案以最大化加权和速率为目标,可通过改变权重因子来调节用户公平性。由于目标问题属于非凸优化问题,通过辅助变量法和凸优化理论将该非凸问题转化为凹问题,再通过拉格朗日对偶法进行求解,并根据问题的解设计了一种迭代功率分配算法。对所提算法的收敛性、系统和速率以及用户公平性进行了仿真。结果表明,所提迭代功率分配算法具有良好的收敛性,相较于VLC⁃OMA系统,VLC⁃NOMA系统能够获得更好的和速率性能。通过调整权重因子,在牺牲较小系统和速率的情况下能够获得比现有功率分配方案更好的系统和速率与用户公平性。展开更多
文摘The paper presents the simulation results of the comparison of three Queuing Mechanisms, First in First out (FIFO), Priority Queuing (PQ), and Weighted Fair Queuing (WFQ). Depending on their effects on the network’s Routers, the load of any algorithm of them over Router’s CPUs and memory usage, the delay occurred between routers when any algorithm has been used and the network application throughput. This comparison explains that, PQ doesn’t need high specification hardware (memory and CPU) but when used it is not fair, because it serves one application and ignore the other application and FIFO mechanism has smaller queuing delay, otherwise PQ has bigger delay.
基金supported by the Chinese Postdoctoral Science Foundation No. 2015M570937the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University No. 2014D03+2 种基金the National High-Tech R&D Program(863 Program) No.2015AA010301the National Natural Science Foundation of Chinaunder Grant No.61572072the Fundamental Research Funds for the Central Universities "Research on the System of Personalized Education using Big Data"
文摘This paper investigates the resource scheduling for heterogeneous vehicular networks, where some moving vehicles are selected and scheduled as helping relays to assist information transmission between the roadside infrastructure and other moving vehicles. For such a system, we propose a mobile-service based max-min fairness resource scheduling scheme, where service amount which is more suitable for high mobility scenarios is adopted to characterize the information transmission capacity of the links and the max-min criteria is adopted to meet the fairness requirement of the moving vehicles. Simulation results demonstrate the effectiveness of our proposed scheme. It is shown that our proposed scheme archives higher throughput and better fairness compared with random scheduling scheme and non-relaying scheme.
基金supported in part by the National Science Foundation of China under grant No. 91638205,grant No. 61771286, and grant No. 61701457, and grant No. 61621091
文摘Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from the BS is poor in general. This renders the fairness among users a challenging issue for maritime communications. In this paper, we consider a practical massive MIMO maritime BS with hybrid digital and analog precoding. Only the large-scale channel state information at the transmitter(CSIT) is considered so as to reduce the implementation complexity and overhead of the system. On this basis, we address the problem of fairness-oriented precoding design. A max-min optimization problem is formulated and solved in an iterative way. Simulation results demonstrate that the proposed scheme performs much better than conventional hybrid precoding algorithms in terms of minimum achievable rate of all the users, for the typical three-ray maritime channel model.
基金supported by the National High-Tech R&D Program (863 Program) No. 2015AA01A705the National Natural Science Foundation of China under Grant No. 61572072+1 种基金the National Science and Technology Major Project No. 2015ZX03001041Fundamental Research Funds for the Central Universities "Research on the System of Personalized Education using Big Data"
文摘Resource allocation is crucial for satellite networks. In this paper, we propose a multi-resource fair allocation scheme, namely Dominant and Max-min Fair(DMMF), to efficiently and fairly allocate resources. It consists of two allocation stages, dominant resource fair(DRF) allocation stage and max-min fairness(MMF) allocation stage. The proposed DMMF scheme exhibits desirable properties, including share incentive, strategy proofness, envy freeness and Pareto optimality. Meanwhile, DMMF can improve the allocation efficiency and reach 100% allocation efficiency.
基金supported in part by the Project of International Cooperation and Exchanges NSFC under Grant No.61860206005in part by the National Natural Science Foundation of China under Grant No.62201329,No.62171262in part by Shandong Provincial Natural Science Foundation under Grant ZR2021YQ47。
文摘Rate-splitting multiple access(RSMA)can cope with a wide range of propagation conditions in multigroup multicast communications through rate splitting optimization.To breakthrough the grouprate limited bottleneck,reconfigurable intelligent surface(RIS)technique can be introduced to assist wireless communications through enhancing the channel quality.In RIS-aided RSMA multigroup multicasting,how to provide fair and high-quality multiuser service under power and spectrum constraints is essential.In this paper,we propose a max-min fair RIS-aided rate-splitting multiple access(MMF-RISRSMA)scheme for multigroup multicast communications,where the rate fairness is obtained by maximizing the minimum group-rate.In doing so,we jointly optimize the beamformers,the rate splitting vector at the transmitter,as well as the phase shifts at RIS.To solve it,we divide the original optimization problem into two subproblems and alternately optimize the variables.The beamforming and rate splitting optimization subproblem is solved by using the successive convex approximation technique.The phase shift optimization subproblem is solved through the penalty function method to achieve a rank-one locally optimal solution.Simulations demonstrate that the proposed MMF-RIS-RSMA scheme can obtain significant performance gain in terms of the minimum group-rate.
文摘All ABR congestion control algorithms reported are designed to achieve max-min fairness. In this paper, a new algorithm named dynamic bandwidth allocation algorithm is presented. Under the same framework, the algorithm can achieve fairness under several given criteria. Simulation result shows that the new algorithm works well under various network configurations, various traffic classes, and scale well to LANs or WANs.
基金supported by the MSIT (Ministry of Science and ICT),Korea,under the ITRC support program (IITP-2021-2018-0-01799)supervised by the IITP (Institute for Information&communications Technology Planning&Evaluation)+1 种基金the Korea Institute of Energy Technology Evaluation and Planning (KETEP)and the Ministry of Trade,Industry&Energy (MOTIE)of the Republic of Korea (No.20214000000280)by the National Research Foundation of Korea (NRF)grant funded by the Korea government (MEST) (No.NRF-2020R1A2C1010929).
文摘Considering the exponential growth of wireless devices with datastarving applications fused with artificial intelligence,the significance of wireless network scalability using distributed behavior and fairness among users is a crucial feature in guaranteeing reliable service to numerous users in the network environment.TheKuramoto model is described as nonlinear selfsustained phase oscillators spinning at varying intrinsic frequencies connected through the sine of their phase differences and displays a phase transition at a specific coupling strength,in which a mutual behavior is accomplished.In this work,we apply the Kuramoto model to achieve a weighted fair resource allocation in a wireless network,where each user has different quality of service(QoS)requirements.Because the original Kuramoto model is the synchronization model,we propose a new weighting parameter for representing requirement of each node resource and modify the Kuramoto model to achieveweighted fair resource allocation for users with different QoS requirements.The proposed modified Kuramoto model allocates all users the resource based on their weight among contending nodes in a distributed manner.We analyze the convergence condition for the proposed model,and the results reveal that the proposed algorithm achieves aweighted fair resource allocation and with potentially high convergence speed compared to previous algorithm.
文摘为了得到既有较强抗差性又有较高效率的估值,提出一种基于F a ir函数的抗差状态估计算法。抗差最小二乘估计通过等价权把抗差估计原理与加权最小二乘(W LS)形式有机结合起来,提出了将F a ir函数通过等价权应用于抗差估计,使抗差和状态估计在计算中一次完成。仿真算例表明,该方法可以有效减小或消除粗差的影响,收敛速度快。
基金supported by General Program of National Natural Science Foundation of China(No.62071090)Sichuan Science and Technology Program(No.2021YFH0014).
文摘As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we consider a multiuser multiple-input single-output(MISO)wireless power transfer(WPT)system,which is assisted by several RISs.In order to improve energy efficiency and reduce hardware cost,we consider that the energy transmitter(ET)in the WPT system is equipped with a constant-envelope analog beamformer,instead of a digital beamformer.Focusing on user fairness,we study a minimum received power maximization problem by jointly optimizing the ET beamforming and the RIS phase shifts,subject to the constant-envelope constraints.We iteratively solve this non-convex maxmin problem by leveraging both the successive convex approximation(SCA)method and the alternating direction method of multipliers(ADMM)algorithm.Numerical results demonstrate the effectiveness of the proposed algorithm and show attractive performance gain brought by RISs.
文摘In order to get the price of a contingent claim with random interval payoff, a concept of fair price was proposed based on weighted expected utility maximization. After setting up a programming model of maximizing the weighted expected utility involving basic securities and contingent claim,and using techniques in optimization analysis,explicit expressions of the fair price interval for a contingent claim were derived. Relations between acceptable price interval and fair price interval were discussed. It is shown that all fair prices fit the demand for acceptability of a market.
基金National Natural Science Foundation of China ( No.60572157)Sharp Corporation of Japanthe Hi-Tech Research and Development Program(863) of China (No.2003AA123310)
文摘A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packet-based calculation of the weight parameters. In addition, this paper proposes a novel service ratio calculation method and a queue mangement technology. The former adjusts the service ratio parameters adaptively based on the dynamics of the packet lengths and thee solves the unfairness problem induced by the variable packet length. The latter improves the utilization of the server's queue buffer and reduces the delay jitter through restricting the buffer length for each flow.
文摘在基于非正交多址接入技术的多用户下行室内可见光通信(Visible light communication system based on non⁃orthogonal multiple access technology,VLC⁃NOMA)系统中,针对和速率与用户公平性冲突的问题,提出一种基于加权和速率最大化的迭代功率分配方案。该方案以最大化加权和速率为目标,可通过改变权重因子来调节用户公平性。由于目标问题属于非凸优化问题,通过辅助变量法和凸优化理论将该非凸问题转化为凹问题,再通过拉格朗日对偶法进行求解,并根据问题的解设计了一种迭代功率分配算法。对所提算法的收敛性、系统和速率以及用户公平性进行了仿真。结果表明,所提迭代功率分配算法具有良好的收敛性,相较于VLC⁃OMA系统,VLC⁃NOMA系统能够获得更好的和速率性能。通过调整权重因子,在牺牲较小系统和速率的情况下能够获得比现有功率分配方案更好的系统和速率与用户公平性。