期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
SAR image de-noising based on texture strength and weighted nuclear norm minimization 被引量:1
1
作者 Jing Fang Shuaiqi Liu +1 位作者 Yang Xiao Hailiang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期807-814,共8页
As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nucl... As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality. 展开更多
关键词 synthetic aperture radar(SAR) image de-noising blind de-noising weighted nuclear norm minimization(WNNM) texture strength
下载PDF
IMPULSE NOISE REMOVAL BY L1 WEIGHTED NUCLEAR NORM MINIMIZATION
2
作者 Jian Lu Yuting Ye +2 位作者 Yiqiu Dong Xiaoxia Liu Yuru Zou 《Journal of Computational Mathematics》 SCIE CSCD 2023年第6期1171-1191,共21页
In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minim... In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minimization(WNNM)has been utilized in many applications.However,most of the work on WNNM is combined with the l 2-data-fidelity term,which is under additive Gaussian noise assumption.In this paper,we introduce the L1-WNNM model,which incorporates the l 1-data-fidelity term and the regularization from WNNM.We apply the alternating direction method of multipliers(ADMM)to solve the non-convex minimization problem in this model.We exploit the low rank prior on the patch matrices extracted based on the image non-local self-similarity and apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse noise.Numerical results show that our method can effectively remove impulse noise. 展开更多
关键词 Image denoising weighted nuclear norm minimization l 1-data-fidelity term Low rank analysis Impulse noise
原文传递
A Patch-Based Low-Rank Minimization Approach for Speckle Noise Reduction in Ultrasound Images
3
作者 Xiao-Guang Lv Fang Li +1 位作者 Jun Liu Sheng-Tai Lu 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第1期155-180,共26页
Ultrasound is a low-cost,non-invasive and real-time imaging modality that has proved popular for many medical applications.Unfortunately,the acquired ultrasound images are often corrupted by speckle noise from scatter... Ultrasound is a low-cost,non-invasive and real-time imaging modality that has proved popular for many medical applications.Unfortunately,the acquired ultrasound images are often corrupted by speckle noise from scatterers smaller than ultrasound beam wavelength.The signal-dependent speckle noise makes visual observation difficult.In this paper,we propose a patch-based low-rank approach for reducing the speckle noise in ultrasound images.After constructing the patch group of the ultrasound images by the block-matching scheme,we establish a variational model using the weighted nuclear norm as a regularizer for the patch group.The alternating direction method of multipliers(ADMM)is applied for solving the established nonconvex model.We return all the approximate patches to their original locations and get the final restored ultrasound images.Experimental results are given to demonstrate that the proposed method outperforms some existing state-of-the-art methods in terms of visual quality and quantitative measures. 展开更多
关键词 Ultrasound images PATCH speckle noise low-rank weighted nuclear norm minimization
原文传递
Improved image denoising via RAISR with fewer filters
4
作者 Theingi Zin Yusuke Nakahara +1 位作者 Takuro Yamaguchi Masaaki Ikehara 《Computational Visual Media》 EI CSCD 2021年第4期499-511,共13页
In recent years,accurate Gaussian noise removal has attracted considerable attention for mobile applications,as in smart phones.Accurate conventional denoising methods have the potential ability to improve denoising p... In recent years,accurate Gaussian noise removal has attracted considerable attention for mobile applications,as in smart phones.Accurate conventional denoising methods have the potential ability to improve denoising performance with no additional time.Therefore,we propose a rapid post-processing method for Gaussian noise removal in this paper.Block matching and 3D filtering and weighted nuclear norm minimization are utilized to suppress noise.Although these nonlocal image denoising methods have quantitatively high performance,some fine image details are lacking due to the loss of high frequency information.To tackle this problem,an improvement to the pioneering RAISR approach(rapid and accurate image super-resolution),is applied to rapidly post-process the denoised image.It gives performance comparable to state-of-the-art super-resolution techniques at low computational cost,preserving important image structures well.Our modification is to reduce the hash classes for the patches extracted from the denoised image and the pixels from the ground truth to 18 filters by two improvements:geometric conversion and reduction of the strength classes.In addition,following RAISR,the census transform is exploited by blending the image processed by noise removal methods with the filtered one to achieve artifact-free results.Experimental results demonstrate that higher quality and more pleasant visual results can be achieved than by other methods,efficiently and with low memory requirements. 展开更多
关键词 block matching and 3D filtering weighted nuclear norm minimization SUPER-RESOLUTION geometric conversion census transform
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部