Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate...Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.展开更多
A new algorithm called the weighted least square discrete parameterization (WLSDP) is presented for the parameterization of triangular meshes over a convex planar region. This algorithm is the linear combination of th...A new algorithm called the weighted least square discrete parameterization (WLSDP) is presented for the parameterization of triangular meshes over a convex planar region. This algorithm is the linear combination of the discrete Conformal mapping(DCM) and the discrete Authalic mapping(DAM). It provides the good properties of both DCM and DAM, such as robustness and low distortion. By adjusting the scaling factor q embedded in the WLSDP, satisfactory parameterizations in different special applications can be achieved.展开更多
Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast a...Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.展开更多
Further developments in the hybrid multiscale energy density method are proposed on the basis of our previous papers. The key points are as follows. (i) The theoretical method for the determination of the weight par...Further developments in the hybrid multiscale energy density method are proposed on the basis of our previous papers. The key points are as follows. (i) The theoretical method for the determination of the weight parameter in the energy coupling equation of transition region in multiscale model is given via constructing underdetermined equations. (ii) By applying the developed mathematical method, the weight parameters have been given and used to treat some problems in homogeneous charge density systems, which ,'ire directly related with multiscale science. (iii) A theoretical algorithm has also been presented for treating non-homogeneous systems of charge density. The key to the theoretical computational methods is the decomposition of the electrostatic energy in the total energy of density functional theory for probing the spanning characteristic at atomic scale, layer by layer, by which the choice of chemical elements and the defect complex effect can be understood deeply. (iv) The'numerical computational program and design have also been presented.展开更多
The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be ...The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be applied to the Internet on a multi-view data set,a multi-view K-multiple-means(MKMM)clustering method is proposed in this paper.The new algorithm introduces view weight parameter,reserves the design of setting multiple subclasses,makes the number of clusters as constraint and obtains clusters by solving optimization problem.The new algorithm is compared with some popular multi-view clustering algorithms.The effectiveness of the new algorithm is proved through the analysis of the experimental results.展开更多
Mesh parameterization is one of the fundamental operations in computer graphics(CG) and computeraided design(CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for singleand multi-...Mesh parameterization is one of the fundamental operations in computer graphics(CG) and computeraided design(CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for singleand multi-boundary triangular meshes. It is an extension of the as-rigid-as-possible(ARAP) approach, which stitches together 1-ring patches instead of individual triangles. To optimize the spring energy, we introduce a linear iterative scheme which employs convex combination weights and a fitting Jacobian matrix corresponding to a prescribed family of transformations. Our algorithm is simple, efficient, and robust. The geometric properties(angle and area)of the original model can also be preserved by appropriately prescribing the singular values of the fitting matrix. To reduce the area and stretch distortions for high-curvature models, a stretch operator is introduced. Numerical results demonstrate that ARAP++ outperforms several state-of-the-art methods in terms of controlling the distortions of angle, area, and stretch. Furthermore, it achieves a better visualization performance for several applications, such as texture mapping and surface remeshing.展开更多
This paper examines the response of the bandpass filter with Gaussian weighting function to arbitrary two-dimensional fields and proposes a new concept of relative response function.Based on the properties of relative...This paper examines the response of the bandpass filter with Gaussian weighting function to arbitrary two-dimensional fields and proposes a new concept of relative response function.Based on the properties of relative re- sponse function,satisfactory weighting parameters C_1 and C_2 are obtained.By studying two cases,the procedure of us- ing structure function curves to choose the maximum response wavelength is formulated.It is shown that bandpass fil- tering offers some improvements to the analysis and forecast of mesoscale weather processes.展开更多
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
文摘Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.
文摘A new algorithm called the weighted least square discrete parameterization (WLSDP) is presented for the parameterization of triangular meshes over a convex planar region. This algorithm is the linear combination of the discrete Conformal mapping(DCM) and the discrete Authalic mapping(DAM). It provides the good properties of both DCM and DAM, such as robustness and low distortion. By adjusting the scaling factor q embedded in the WLSDP, satisfactory parameterizations in different special applications can be achieved.
基金Indian Institute of Technology,Kharagpur in India for supporting this work
文摘Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.
基金supported by the National Basic Research Program of China(Grant No.2011CB606402)the National Natural Science Foundation of China(Grant No.51071091)
文摘Further developments in the hybrid multiscale energy density method are proposed on the basis of our previous papers. The key points are as follows. (i) The theoretical method for the determination of the weight parameter in the energy coupling equation of transition region in multiscale model is given via constructing underdetermined equations. (ii) By applying the developed mathematical method, the weight parameters have been given and used to treat some problems in homogeneous charge density systems, which ,'ire directly related with multiscale science. (iii) A theoretical algorithm has also been presented for treating non-homogeneous systems of charge density. The key to the theoretical computational methods is the decomposition of the electrostatic energy in the total energy of density functional theory for probing the spanning characteristic at atomic scale, layer by layer, by which the choice of chemical elements and the defect complex effect can be understood deeply. (iv) The'numerical computational program and design have also been presented.
基金National Youth Natural Science Foundationof China(No.61806006)Innovation Program for Graduate of Jiangsu Province(No.KYLX160-781)Project Supported by Jiangsu University Superior Discipline Construction Project。
文摘The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be applied to the Internet on a multi-view data set,a multi-view K-multiple-means(MKMM)clustering method is proposed in this paper.The new algorithm introduces view weight parameter,reserves the design of setting multiple subclasses,makes the number of clusters as constraint and obtains clusters by solving optimization problem.The new algorithm is compared with some popular multi-view clustering algorithms.The effectiveness of the new algorithm is proved through the analysis of the experimental results.
基金supported by the National Natural Science Foundation of China(Nos.61432003,61572105,11171052,and 61328206)
文摘Mesh parameterization is one of the fundamental operations in computer graphics(CG) and computeraided design(CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for singleand multi-boundary triangular meshes. It is an extension of the as-rigid-as-possible(ARAP) approach, which stitches together 1-ring patches instead of individual triangles. To optimize the spring energy, we introduce a linear iterative scheme which employs convex combination weights and a fitting Jacobian matrix corresponding to a prescribed family of transformations. Our algorithm is simple, efficient, and robust. The geometric properties(angle and area)of the original model can also be preserved by appropriately prescribing the singular values of the fitting matrix. To reduce the area and stretch distortions for high-curvature models, a stretch operator is introduced. Numerical results demonstrate that ARAP++ outperforms several state-of-the-art methods in terms of controlling the distortions of angle, area, and stretch. Furthermore, it achieves a better visualization performance for several applications, such as texture mapping and surface remeshing.
文摘This paper examines the response of the bandpass filter with Gaussian weighting function to arbitrary two-dimensional fields and proposes a new concept of relative response function.Based on the properties of relative re- sponse function,satisfactory weighting parameters C_1 and C_2 are obtained.By studying two cases,the procedure of us- ing structure function curves to choose the maximum response wavelength is formulated.It is shown that bandpass fil- tering offers some improvements to the analysis and forecast of mesoscale weather processes.