Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a k...Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a kernel estimate of f(.) under certain regular conditions.展开更多
A systematic methodology is proposed to deal with the weighted density approximation version of clas-sical density functional theory by employing the knowledge of radial distribution function of bulk fluid. The presen...A systematic methodology is proposed to deal with the weighted density approximation version of clas-sical density functional theory by employing the knowledge of radial distribution function of bulk fluid. The presentmethodology results from the concept of universality of the free energy density functional combined with the test particlemethod. It is shown that the new method is very accurate for the predictions of density distribution ofa hard sphere fluidat different confining geometries. The physical foundation of the present methodology is also applied to the quantumdensity functional theory.展开更多
In this paper, the normal approximation rate and the random weighting approximation rate of error distribution of the kernel estimator of conditional density function f(y|x) are studied. The results may be used to...In this paper, the normal approximation rate and the random weighting approximation rate of error distribution of the kernel estimator of conditional density function f(y|x) are studied. The results may be used to construct the confidence interval of f(y|x) .展开更多
This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation o...This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation of random transition function. Finally, we give the sufficient condition for the existence of ergodic potential kernel for homogeneous q- processes in random environments.展开更多
Traditional methods for early warning of dam displacements usually assume that residual displacements follow a normal distribution.This assumption deviates from the reality,thereby affecting the reliability of early w...Traditional methods for early warning of dam displacements usually assume that residual displacements follow a normal distribution.This assumption deviates from the reality,thereby affecting the reliability of early warning results and leading to misjudgments of dam displacement behavior.To solve this problem,this study proposed an early warning method using a non-normal distribution function.A new early warning index was developed using cumulative distribution function(CDF)values.The method of kernel density estimation was used to calculate the CDF values of residual displacements at a single point.The copula function was used to compute the CDF values of residual displacements at multiple points.Numerical results showed that,with residual displacements in a non-normal distribution,the early warning method proposed in this study accurately reflected the dam displacement behavior and effectively reduced the frequency of false alarms.This method is expected to aid in the safe operation of dams.展开更多
Unlike height-diameter equations for standing trees commonly used in forest resources modelling,tree height models for cut-to-length(CTL)stems tend to produce prediction errors whose distributions are not conditionall...Unlike height-diameter equations for standing trees commonly used in forest resources modelling,tree height models for cut-to-length(CTL)stems tend to produce prediction errors whose distributions are not conditionally normal but are rather leptokurtic and heavy-tailed.This feature was merely noticed in previous studies but never thoroughly investigated.This study characterized the prediction error distribution of a newly developed such tree height model for Pin us radiata(D.Don)through the three-parameter Burr TypeⅫ(BⅫ)distribution.The model’s prediction errors(ε)exhibited heteroskedasticity conditional mainly on the small end relative diameter of the top log and also on DBH to a minor extent.Structured serial correlations were also present in the data.A total of 14 candidate weighting functions were compared to select the best two for weightingεin order to reduce its conditional heteroskedasticity.The weighted prediction errors(εw)were shifted by a constant to the positive range supported by the BXII distribution.Then the distribution of weighted and shifted prediction errors(εw+)was characterized by the BⅫdistribution using maximum likelihood estimation through 1000 times of repeated random sampling,fitting and goodness-of-fit testing,each time by randomly taking only one observation from each tree to circumvent the potential adverse impact of serial correlation in the data on parameter estimation and inferences.The nonparametric two sample Kolmogorov-Smirnov(KS)goodness-of-fit test and its closely related Kuiper’s(KU)test showed the fitted BⅫdistributions provided a good fit to the highly leptokurtic and heavy-tailed distribution ofε.Random samples generated from the fitted BⅫdistributions ofεw+derived from using the best two weighting functions,when back-shifted and unweighted,exhibited distributions that were,in about97 and 95%of the 1000 cases respectively,not statistically different from the distribution ofε.Our results for cut-tolength P.radiata stems represented the first case of any tree species where a non-normal error distribution in tree height prediction was described by an underlying probability distribution.The fitted BXII prediction error distribution will help to unlock the full potential of the new tree height model in forest resources modelling of P.radiata plantations,particularly when uncertainty assessments,statistical inferences and error propagations are needed in research and practical applications through harvester data analytics.展开更多
文摘Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a kernel estimate of f(.) under certain regular conditions.
文摘A systematic methodology is proposed to deal with the weighted density approximation version of clas-sical density functional theory by employing the knowledge of radial distribution function of bulk fluid. The presentmethodology results from the concept of universality of the free energy density functional combined with the test particlemethod. It is shown that the new method is very accurate for the predictions of density distribution ofa hard sphere fluidat different confining geometries. The physical foundation of the present methodology is also applied to the quantumdensity functional theory.
基金Supported by Natural Science Foundation of Beijing City and National Natural Science Foundation ofChina(2 2 30 4 1 0 0 1 30 1
文摘In this paper, the normal approximation rate and the random weighting approximation rate of error distribution of the kernel estimator of conditional density function f(y|x) are studied. The results may be used to construct the confidence interval of f(y|x) .
基金Supported by the National Natural Science Foundation of China (10371092)
文摘This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation of random transition function. Finally, we give the sufficient condition for the existence of ergodic potential kernel for homogeneous q- processes in random environments.
基金supported by the National Natural Science Foundation of China(Grant No.52109156)the Science and Technology Project of the Jiangxi Provincial Education Department(Grant No.GJJ190970).
文摘Traditional methods for early warning of dam displacements usually assume that residual displacements follow a normal distribution.This assumption deviates from the reality,thereby affecting the reliability of early warning results and leading to misjudgments of dam displacement behavior.To solve this problem,this study proposed an early warning method using a non-normal distribution function.A new early warning index was developed using cumulative distribution function(CDF)values.The method of kernel density estimation was used to calculate the CDF values of residual displacements at a single point.The copula function was used to compute the CDF values of residual displacements at multiple points.Numerical results showed that,with residual displacements in a non-normal distribution,the early warning method proposed in this study accurately reflected the dam displacement behavior and effectively reduced the frequency of false alarms.This method is expected to aid in the safe operation of dams.
文摘Unlike height-diameter equations for standing trees commonly used in forest resources modelling,tree height models for cut-to-length(CTL)stems tend to produce prediction errors whose distributions are not conditionally normal but are rather leptokurtic and heavy-tailed.This feature was merely noticed in previous studies but never thoroughly investigated.This study characterized the prediction error distribution of a newly developed such tree height model for Pin us radiata(D.Don)through the three-parameter Burr TypeⅫ(BⅫ)distribution.The model’s prediction errors(ε)exhibited heteroskedasticity conditional mainly on the small end relative diameter of the top log and also on DBH to a minor extent.Structured serial correlations were also present in the data.A total of 14 candidate weighting functions were compared to select the best two for weightingεin order to reduce its conditional heteroskedasticity.The weighted prediction errors(εw)were shifted by a constant to the positive range supported by the BXII distribution.Then the distribution of weighted and shifted prediction errors(εw+)was characterized by the BⅫdistribution using maximum likelihood estimation through 1000 times of repeated random sampling,fitting and goodness-of-fit testing,each time by randomly taking only one observation from each tree to circumvent the potential adverse impact of serial correlation in the data on parameter estimation and inferences.The nonparametric two sample Kolmogorov-Smirnov(KS)goodness-of-fit test and its closely related Kuiper’s(KU)test showed the fitted BⅫdistributions provided a good fit to the highly leptokurtic and heavy-tailed distribution ofε.Random samples generated from the fitted BⅫdistributions ofεw+derived from using the best two weighting functions,when back-shifted and unweighted,exhibited distributions that were,in about97 and 95%of the 1000 cases respectively,not statistically different from the distribution ofε.Our results for cut-tolength P.radiata stems represented the first case of any tree species where a non-normal error distribution in tree height prediction was described by an underlying probability distribution.The fitted BXII prediction error distribution will help to unlock the full potential of the new tree height model in forest resources modelling of P.radiata plantations,particularly when uncertainty assessments,statistical inferences and error propagations are needed in research and practical applications through harvester data analytics.