Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) w...Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.展开更多
The mechanism underlying body weight support treadmill training in elderly hemiplegic stroke patients is largely unknown. This study aimed to elucidate the changes of cortical blood flow in seven elderly patients with...The mechanism underlying body weight support treadmill training in elderly hemiplegic stroke patients is largely unknown. This study aimed to elucidate the changes of cortical blood flow in seven elderly patients with post-stroke hemiplegia before and after body weight support treadmill training by semi-quantitative analysis of regional cerebral blood flow assessed by single photon emission computed tomography. Body weight support treadmill training for 6 months was effective in improving cerebral blood flow and promoting the walking speed and balance recovery in elderly patients with post-stroke hemiplegia.展开更多
Finding correlated sequential patterns in large sequence databases is one of the essential tasks in data mining since a huge number of sequential patterns are usually mined, but it is hard to find sequential patterns ...Finding correlated sequential patterns in large sequence databases is one of the essential tasks in data mining since a huge number of sequential patterns are usually mined, but it is hard to find sequential patterns with the correlation. According to the requirement of real applications, the needed data analysis should be different. In previous mining approaches, after mining the sequential patterns, sequential patterns with the weak affinity are found even with a high minimum support. In this paper, a new framework is suggested for mining weighted support affinity patterns in which an objective measure, sequential ws-confidence is developed to detect correlated sequential patterns with weighted support affinity patterns. To efficiently prune the weak affinity patterns, it is proved that ws-confidence measure satisfies the anti-monotone and cross weighted support properties which can be applied to eliminate sequential patterns with dissimilar weighted support levels. Based on the framework, a weighted support affinity pattern mining algorithm (WSMiner) is suggested. The performance study shows that WSMiner is efficient and scalable for mining weighted support affinity patterns.展开更多
This paper deals with a design approach of a gait training machine based on a quantitative gait analysis. The proposed training machine is composed of a body weight support device and a cable-driven parallel robot. Th...This paper deals with a design approach of a gait training machine based on a quantitative gait analysis. The proposed training machine is composed of a body weight support device and a cable-driven parallel robot. This paper is focused on the cable-driven robot, which controls the pose of the lower limb through an orthosis placed on the patient's leg. The cable robot reproduces a normal gait movement through the motion of the orthosis. A motion capture system is used to perform the quantitative analysis of a normal gait, which will be used as an input to the inverse dynamic model of the cable robot. By means of an optimization algorithm, the optimal design parameters, which minimize the tensions in the cables, are determined. Two constraints are considered, i.e., a non-negative tension in the cables at all times, and a free cable/end-effector collision. Once the optimal solution is computed, a power analysis is carried out in order to size the robot actuators. The proposed approach can be easily extended for the design study of a similar type of cable robots.展开更多
The weight hierarchy of a binary linear [n, k] code C is the sequence (d 1, d 2, . . . , d k ), where d r is the smallest support of an r-dimensional subcode of C. The codes of dimension 4 are collected in classes and...The weight hierarchy of a binary linear [n, k] code C is the sequence (d 1, d 2, . . . , d k ), where d r is the smallest support of an r-dimensional subcode of C. The codes of dimension 4 are collected in classes and the possible weight hierarchies in each class is determined by finite projective geometries. The possible weight hierarchies in class A, B, C, D are determined in Part (I). The possible weight hierarchies in class E, F, G, H, I are determined in Part (II).展开更多
To help walking,using assistive devices can be considered to reduce the loads caused by weight and to effectively decrease the propulsive forces.In this study,a mobility Saddle-Assistive Device(S-AD)supporting body we...To help walking,using assistive devices can be considered to reduce the loads caused by weight and to effectively decrease the propulsive forces.In this study,a mobility Saddle-Assistive Device(S-AD)supporting body weight while walking was evaluated on two healthy volunteers.This device is based on the support of body weight against gravity with the help of a saddle,which is not used in other passive mobility assistive devices.To prove the efficiency of this device,the experimental results obtained while walking with this device were compared with those related to walking without the assistive device.The results showed that this device could significantly reduce the forces and torque of the lower and upper limbs when walking.By distributing the load on the saddle,the vertical force and the propulsive force in the best conditions were decreased to 46.7%and were increased to 13.7%in body weight,respectively.Using a S-AD can help patients with lower limbs weakness and elderly people to walk.展开更多
When there is substantial heterogeneity of treatment effectiveness for comparative treatmentselection, it is crucial to identify individualised treatment rules for patients who have heterogeneous responses to treatmen...When there is substantial heterogeneity of treatment effectiveness for comparative treatmentselection, it is crucial to identify individualised treatment rules for patients who have heterogeneous responses to treatment. Existing approaches include directly modelling clinical outcomeby defining the optimal treatment rule according to the interactions between treatment andcovariates and outcome weighted approach that uses clinical outcome as weights to maximise atarget function whose value directly reflects correct treatment assignment. All existing articles ofestimating individualised treatment rules are all assuming just two treatment assignments. Herewe propose an outcome weighted learning approach that uses a vector hinge loss to extend estimating individualised treatment rules in multi-category treatments case. The consistency of theresulting estimator is shown. We also demonstrate the performance of our approach in simulationstudies and a real data analysis.展开更多
Finite projective geometry method is effectively used to study the relative generalized Hamming weights of 4-dimensional linear codes, which are divided into 9 classes in order to get much more information about the r...Finite projective geometry method is effectively used to study the relative generalized Hamming weights of 4-dimensional linear codes, which are divided into 9 classes in order to get much more information about the relative generalized Hamming weights, and part of the relative generalized Hamming weights of a 4-dimensional linear code with a 1-dimensional subcode are determined.展开更多
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of China
文摘Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.
文摘The mechanism underlying body weight support treadmill training in elderly hemiplegic stroke patients is largely unknown. This study aimed to elucidate the changes of cortical blood flow in seven elderly patients with post-stroke hemiplegia before and after body weight support treadmill training by semi-quantitative analysis of regional cerebral blood flow assessed by single photon emission computed tomography. Body weight support treadmill training for 6 months was effective in improving cerebral blood flow and promoting the walking speed and balance recovery in elderly patients with post-stroke hemiplegia.
文摘Finding correlated sequential patterns in large sequence databases is one of the essential tasks in data mining since a huge number of sequential patterns are usually mined, but it is hard to find sequential patterns with the correlation. According to the requirement of real applications, the needed data analysis should be different. In previous mining approaches, after mining the sequential patterns, sequential patterns with the weak affinity are found even with a high minimum support. In this paper, a new framework is suggested for mining weighted support affinity patterns in which an objective measure, sequential ws-confidence is developed to detect correlated sequential patterns with weighted support affinity patterns. To efficiently prune the weak affinity patterns, it is proved that ws-confidence measure satisfies the anti-monotone and cross weighted support properties which can be applied to eliminate sequential patterns with dissimilar weighted support levels. Based on the framework, a weighted support affinity pattern mining algorithm (WSMiner) is suggested. The performance study shows that WSMiner is efficient and scalable for mining weighted support affinity patterns.
文摘This paper deals with a design approach of a gait training machine based on a quantitative gait analysis. The proposed training machine is composed of a body weight support device and a cable-driven parallel robot. This paper is focused on the cable-driven robot, which controls the pose of the lower limb through an orthosis placed on the patient's leg. The cable robot reproduces a normal gait movement through the motion of the orthosis. A motion capture system is used to perform the quantitative analysis of a normal gait, which will be used as an input to the inverse dynamic model of the cable robot. By means of an optimization algorithm, the optimal design parameters, which minimize the tensions in the cables, are determined. Two constraints are considered, i.e., a non-negative tension in the cables at all times, and a free cable/end-effector collision. Once the optimal solution is computed, a power analysis is carried out in order to size the robot actuators. The proposed approach can be easily extended for the design study of a similar type of cable robots.
基金supported by The Norwegian Research Councilthe National Science Foundation of China(10271116)
文摘The weight hierarchy of a binary linear [n, k] code C is the sequence (d 1, d 2, . . . , d k ), where d r is the smallest support of an r-dimensional subcode of C. The codes of dimension 4 are collected in classes and the possible weight hierarchies in each class is determined by finite projective geometries. The possible weight hierarchies in class A, B, C, D are determined in Part (I). The possible weight hierarchies in class E, F, G, H, I are determined in Part (II).
文摘To help walking,using assistive devices can be considered to reduce the loads caused by weight and to effectively decrease the propulsive forces.In this study,a mobility Saddle-Assistive Device(S-AD)supporting body weight while walking was evaluated on two healthy volunteers.This device is based on the support of body weight against gravity with the help of a saddle,which is not used in other passive mobility assistive devices.To prove the efficiency of this device,the experimental results obtained while walking with this device were compared with those related to walking without the assistive device.The results showed that this device could significantly reduce the forces and torque of the lower and upper limbs when walking.By distributing the load on the saddle,the vertical force and the propulsive force in the best conditions were decreased to 46.7%and were increased to 13.7%in body weight,respectively.Using a S-AD can help patients with lower limbs weakness and elderly people to walk.
基金The author would like to thank Jun Shao and Menggang Yu for their help with preparing the manuscript.This work was supported by the Chinese 111 Project[grant number B14019](for Lou and Shao).
文摘When there is substantial heterogeneity of treatment effectiveness for comparative treatmentselection, it is crucial to identify individualised treatment rules for patients who have heterogeneous responses to treatment. Existing approaches include directly modelling clinical outcomeby defining the optimal treatment rule according to the interactions between treatment andcovariates and outcome weighted approach that uses clinical outcome as weights to maximise atarget function whose value directly reflects correct treatment assignment. All existing articles ofestimating individualised treatment rules are all assuming just two treatment assignments. Herewe propose an outcome weighted learning approach that uses a vector hinge loss to extend estimating individualised treatment rules in multi-category treatments case. The consistency of theresulting estimator is shown. We also demonstrate the performance of our approach in simulationstudies and a real data analysis.
基金supported by the National Natural Science Foundation of China under Grant Nos.11171366 and 61170257the Special Training Program of Beijing Institute of Technology
文摘Finite projective geometry method is effectively used to study the relative generalized Hamming weights of 4-dimensional linear codes, which are divided into 9 classes in order to get much more information about the relative generalized Hamming weights, and part of the relative generalized Hamming weights of a 4-dimensional linear code with a 1-dimensional subcode are determined.