期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Existence of <i>T</i>-<i>ν</i>-<i>p</i>(<i>x</i>)-Solution of a Nonhomogeneous Elliptic Problem with Right Hand Side Measure
1
作者 El Houcine Rami Abdelkrim Barbara El Houssine Azroul 《Journal of Applied Mathematics and Physics》 2021年第11期2717-2732,共16页
Using the theory of weighted Sobolev spaces with variable exponent and the <em>L</em><sup>1</sup>-version on Minty’s lemma, we investigate the existence of solutions for some nonhomogeneous Di... Using the theory of weighted Sobolev spaces with variable exponent and the <em>L</em><sup>1</sup>-version on Minty’s lemma, we investigate the existence of solutions for some nonhomogeneous Dirichlet problems generated by the Leray-Lions operator of divergence form, with right-hand side measure. Among the interest of this article is the given of a very important approach to ensure the existence of a weak solution of this type of problem and of generalization to a system with the minimum of conditions. 展开更多
关键词 Nonhomogeneous Elliptic Equations Dirichlet Problems Weighted Sobolev Spaces with Variable exponent Minty’s Lemma T-ν-p(x)-Solutions
下载PDF
Weighted Estimates of Variable Kernel Fractional Integral and Its Commutators on Vanishing Generalized Morrey Spaces with Variable Exponent 被引量:6
2
作者 Xukui SHAO Shuangping TAO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2021年第3期451-470,共20页
In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized w... In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized weighted Morrey spaces.And the corresponding commutators generated by BMO function are also considered. 展开更多
关键词 Fractional integral COMMUTATOR Variable kernel Vanishing generalized weighted Morrey space with variable exponent BMO space
原文传递
On the Weighted Elliptic Problems Involving Multi-singular Potentials and Multi-critical Exponents 被引量:1
3
作者 Dong Sheng KANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第3期435-444,共10页
Suppose Ω belong to R^N(N≥3) is a smooth bounded domain,ξi∈Ω,0〈ai〈√μ,μ:=((N-1)/2)^2,0≤μi〈(√μ-ai)^2,ai〈bi〈ai+1 and pi:=2N/N-2(1+ai-bi)are the weighted critical Hardy-Sobolev exponents, i ... Suppose Ω belong to R^N(N≥3) is a smooth bounded domain,ξi∈Ω,0〈ai〈√μ,μ:=((N-1)/2)^2,0≤μi〈(√μ-ai)^2,ai〈bi〈ai+1 and pi:=2N/N-2(1+ai-bi)are the weighted critical Hardy-Sobolev exponents, i = 1, 2,..., k, k ≥ 2. We deal with the conditions that ensure the existence of positive solutions to the multi-singular and multi-critical elliptic problem ∑i=1^k(-div(|x-ξi|^-2ai△↓u)-μiu/|x-ξi|^2(1+ai)-u^pi-1/|x-ξi|^bipi)=0with Dirichlet boundary condition, which involves the weighted Hardy inequality and the weighted Hardy-Sobolev inequality. The results depend crucially on the parameters ai, bi and #i, i -- 1, 2,..., k. 展开更多
关键词 multi-singular multi-critical weighted elliptic problem weighted Hardy-Sobolev exponent
原文传递
Renormalized Solutions of Nonlinear Parabolic Equations in Weigthed Variable-Exponent Space
4
作者 YOUSSEF Akdim CHAKIR Allalou NEZHA El gorch 《Journal of Partial Differential Equations》 CSCD 2015年第3期225-252,共28页
This article is devoted to study the existence of renormalized solutions for the nonlinear p (x)-parabolic problem in the Weighted-Variable-Exponent Sobolev spaces, without the sign condition and the coercivity cond... This article is devoted to study the existence of renormalized solutions for the nonlinear p (x)-parabolic problem in the Weighted-Variable-Exponent Sobolev spaces, without the sign condition and the coercivity condition. 展开更多
关键词 Weighted variable exponent Lebesgue Sobolev space Young's inequality renormal-ized solution parabolic problems.
原文传递
Existence results for degenerate p(x)-Laplace equations with Leray-Lions type operators 被引量:1
5
作者 HO Ky SIM Inbo 《Science China Mathematics》 SCIE CSCD 2017年第1期133-146,共14页
We show the existence and multiplicity of solutions to degenerate p(x)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniquen... We show the existence and multiplicity of solutions to degenerate p(x)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniqueness and nonnegativeness of solutions when the principal operator is monotone and the nonlinearity is nonincreasing. Our operator is of the most general form containing all previous ones and we also weaken assumptions on the operator and the nonlinearity to get the above results. Moreover, we do not impose the restricted condition on p(x) and the uniform monotonicity of the operator to show the existence of three distinct solutions. 展开更多
关键词 p(x)-Laplacian weighted variable exponent Lebesgue-Sobolev spaces multiplicity a priori bound Leray-Lions type operators
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部