For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f...For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.展开更多
In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequali...Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequalities in weighted Lebesgue space and weighted normed sequence space.展开更多
Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting...Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.展开更多
In this paper, the authors prove the weighted boundedness of singular integral and fractional integral with a rough kernel on the weighted λ-central Morrey space. Moreover, the weighted estimate for commutators of si...In this paper, the authors prove the weighted boundedness of singular integral and fractional integral with a rough kernel on the weighted λ-central Morrey space. Moreover, the weighted estimate for commutators of singular integral with a rough kernel on the weighted λ-central Morrey space is also given.展开更多
This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from...This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from weighted Lebesgue spaces LP(w) to weighted Morrey spaces Mpq(ω) for 1 〈 q 〈 p 〈 ∞. As a corollary, if M is (weak) bounded on Mpq(ω), then ω∈Ap. The Ap condition also characterizes the boundedness of the Riesz transform Rj and convolution operators Tε on weighted Morrey spaces. Finally, we show that ω∈Ap if and only if ω∈BMOp' (ω) for 1 ≤ p 〈 ∞ and 1/p + 1/p' = 1.展开更多
In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the w...In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞.展开更多
We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H...In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3].展开更多
The family of spaces F(p,q,s)was introduced by the author in 1996.Since then,there has been great development in the theory of these spaces,due to the fact that these spaces include many classical function spaces,and ...The family of spaces F(p,q,s)was introduced by the author in 1996.Since then,there has been great development in the theory of these spaces,due to the fact that these spaces include many classical function spaces,and have connections with many other areas of mathematics.In this survey we present some basic properties and recent results on F(p,q,s)spaces.展开更多
Let L be the infinitesimal generator of an analytic semigroup on L^2 (R^n) with Gaussian kernel bound, and let L^-α/2 be the fractional integrals of L for 0 〈 α 〈 n. In this paper, we will obtain some boundedn...Let L be the infinitesimal generator of an analytic semigroup on L^2 (R^n) with Gaussian kernel bound, and let L^-α/2 be the fractional integrals of L for 0 〈 α 〈 n. In this paper, we will obtain some boundedness properties of commutators [b, L^-α/2] on weighted Morrey spaces L^p,k(w) when the symbol b belongs to BMO(Rn) or the homogeneous Lipschitz space.展开更多
Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A o...Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A of the weighted Lorentz space, and showed that the space of the multipliers from L_w~1,(G) to A is algebrically isomorphic and homeomorphic to A.展开更多
The present paper introduces a kind of Nevai-Durrmeyer operators which can be used to approximate functions in Lω^p, spaces with the weight ω(x)=1/√(1-x^2) and the approximate rate is also estimated.
In this paper, we will obtain the weak type estimates of intrinsic square func- tions including the Lusin area integral, Littlewood-Paley g-function and g^-function on the weighted Morrey spaces L^1,k (w) for 0〈k〈...In this paper, we will obtain the weak type estimates of intrinsic square func- tions including the Lusin area integral, Littlewood-Paley g-function and g^-function on the weighted Morrey spaces L^1,k (w) for 0〈k〈 1 and w ∈ A1.展开更多
By the interpolating inequality and a priori estimates in the weighted space,the existence of the global solutions for the Ginzburg-Landau equation coupled with the BBM equation in an unbounded domain is considered, a...By the interpolating inequality and a priori estimates in the weighted space,the existence of the global solutions for the Ginzburg-Landau equation coupled with the BBM equation in an unbounded domain is considered, and the existence of the maximal attractor is obtained.展开更多
Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces,...Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces, establish the boundedness on these spaces of the pseudo-differential operators of order zero and show that , the class of C(Rn)-functions with compactly support, is dense in and there is a subsequence, which converges in distrbutional sense to some distribution of , of any bounded sequence in In addition, the author also set up the boundedness of some non-linear quantities in compensated compactness.展开更多
Let G be a locally compact unimodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Aωp,q (G) and prove that Aωp,q (G) is a t...Let G be a locally compact unimodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Aωp,q (G) and prove that Aωp,q (G) is a translation invariant Banach space. Fur- thermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then Aωp,q (G) admits an approximate identity bounded in Lω1 (G). It is also proved that the space Lωp (G) Lω1 Lωq (G) is isometrically isomorphic to the space Aωp,q (G) and the space of multipliers from Lωp (G) to Lq-1, (G) is isometrically isomorphic to the dual of the space Aωp,q (G) iff G satisfies a property Ppq. At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from Lω1 (G) to Aωp,q (G) is the space Aωp,q (G).展开更多
In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a ...In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.展开更多
文摘For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.
基金supported by the Natural Science Foundation of China(12271134)the Shanxi Scholarship Council of China(2020–089)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20200019).
文摘In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
基金Supported by Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515012429)Guangzhou Huashang College Research Team Project(Grant No.2021HSKT03)。
文摘Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequalities in weighted Lebesgue space and weighted normed sequence space.
文摘Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
基金Supported by the National Natural Science Foundation of China(11561057,11226104)the Jiangxi Natural Science Foundation of China(20151BAB211002)+1 种基金the Science Foundation of Jiangxi Education Department(GJJ151054)the Scientific Research project of Shangrao Normal University
文摘In this paper, the authors prove the weighted boundedness of singular integral and fractional integral with a rough kernel on the weighted λ-central Morrey space. Moreover, the weighted estimate for commutators of singular integral with a rough kernel on the weighted λ-central Morrey space is also given.
基金supported by National Natural Science Foundation of China(Grant No.11661075)
文摘This manuscript addresses Muckenhoupt Ap weight theory in connection to Mor- rey and BMO spaces. It is proved that a; belongs to Muckenhoupt Ap class, if and only if Hardy-Littlewood maximal function M is bounded from weighted Lebesgue spaces LP(w) to weighted Morrey spaces Mpq(ω) for 1 〈 q 〈 p 〈 ∞. As a corollary, if M is (weak) bounded on Mpq(ω), then ω∈Ap. The Ap condition also characterizes the boundedness of the Riesz transform Rj and convolution operators Tε on weighted Morrey spaces. Finally, we show that ω∈Ap if and only if ω∈BMOp' (ω) for 1 ≤ p 〈 ∞ and 1/p + 1/p' = 1.
基金supported in part by National Natural Foundation of China (Grant No. 11161042 and No. 11071250)
文摘In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞.
基金This work was supported by NSF of China(11171203,11201280)New Teacher’s Fund for Doctor Stations,Ministry of Education(20114402120003)NSF of Guangdong Province(10151503101000025,S2011010004511,S2011040004131)
文摘We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
基金Natural Science Foundation of China(11771166)Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46.
文摘In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3].
文摘The family of spaces F(p,q,s)was introduced by the author in 1996.Since then,there has been great development in the theory of these spaces,due to the fact that these spaces include many classical function spaces,and have connections with many other areas of mathematics.In this survey we present some basic properties and recent results on F(p,q,s)spaces.
文摘Let L be the infinitesimal generator of an analytic semigroup on L^2 (R^n) with Gaussian kernel bound, and let L^-α/2 be the fractional integrals of L for 0 〈 α 〈 n. In this paper, we will obtain some boundedness properties of commutators [b, L^-α/2] on weighted Morrey spaces L^p,k(w) when the symbol b belongs to BMO(Rn) or the homogeneous Lipschitz space.
文摘Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A of the weighted Lorentz space, and showed that the space of the multipliers from L_w~1,(G) to A is algebrically isomorphic and homeomorphic to A.
基金Supported by Scientific Research Fund of Zhejiang Provincial Education Department(No. 20030431)the Young College Teachers Program of Zhejiang Province, and the Young Doctor Foundation of City of Ningbo (No. 2004A620017, 2005A620032).
文摘The present paper introduces a kind of Nevai-Durrmeyer operators which can be used to approximate functions in Lω^p, spaces with the weight ω(x)=1/√(1-x^2) and the approximate rate is also estimated.
文摘In this paper, we will obtain the weak type estimates of intrinsic square func- tions including the Lusin area integral, Littlewood-Paley g-function and g^-function on the weighted Morrey spaces L^1,k (w) for 0〈k〈 1 and w ∈ A1.
文摘By the interpolating inequality and a priori estimates in the weighted space,the existence of the global solutions for the Ginzburg-Landau equation coupled with the BBM equation in an unbounded domain is considered, and the existence of the maximal attractor is obtained.
基金Supported by the National Natural Science Foundation of China (10471039)the Grant of Higher Schools' Natural Science Basic Research of Jiangsu Province of China (06KJD11017507KJB110115)
文摘The authors study the iterated commutators on the weighted Bergman spaces A2(φ), and prove that Cnh is compact on A2(φ) if and only if h ∈ B0.
基金Supported by the NECF and the NECF and the NNSF of China
文摘Let (.the Muckenhoupt class). In this paper, the author introduce the weighted Herz-type Hardy spaces (w2) and present their atomic decomposition. Using the atomic decomposition, the author find out their dual spaces, establish the boundedness on these spaces of the pseudo-differential operators of order zero and show that , the class of C(Rn)-functions with compactly support, is dense in and there is a subsequence, which converges in distrbutional sense to some distribution of , of any bounded sequence in In addition, the author also set up the boundedness of some non-linear quantities in compensated compactness.
文摘Let G be a locally compact unimodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Aωp,q (G) and prove that Aωp,q (G) is a translation invariant Banach space. Fur- thermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then Aωp,q (G) admits an approximate identity bounded in Lω1 (G). It is also proved that the space Lωp (G) Lω1 Lωq (G) is isometrically isomorphic to the space Aωp,q (G) and the space of multipliers from Lωp (G) to Lq-1, (G) is isometrically isomorphic to the dual of the space Aωp,q (G) iff G satisfies a property Ppq. At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from Lω1 (G) to Aωp,q (G) is the space Aωp,q (G).
文摘In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.