Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
A PI control strategy based on fuzzy set-point weighting following was proposed for the active damping control of a hydraulic crane boom system (HCBS). Two valve-controlled PI controllers, which include a proportion...A PI control strategy based on fuzzy set-point weighting following was proposed for the active damping control of a hydraulic crane boom system (HCBS). Two valve-controlled PI controllers, which include a proportional feedforward controller based on fuzzy set-point weighting following and a limited semi-integrator(LSI), are designed respectively. LSI is used to limit output signal and to prevent wind up at the low frequency of the spectrum. By using a range camera and an electronic feedback control, the tip damping on the HCBS can be adjusted artificially. A collaborative control simulation technique of HOPSAN and MATLAB/SIMULINK is applied to the controller design. Simulation results show that the proposed PI control system has less overshoot as well as faster response. The tip damping on the HCBS during operation is improved.展开更多
The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission ...The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission delays. The paper uses an LMI-based iterative nonlinear optimization algorithm to establish a method of designing state-feedback controllers for power systems with a time-varying delay. This method is based on the delay-dependent stabilization conditions obtained by the improved free weighting matrix (IFWM) approach. In the stabilization conditions, the upper bound of feedback signal’s transmission delays is taken into consideration. Combining theoriesof state feedback control and state observer, the ASC is designed and time-delay output feedback robust controller is realized for power system. The ASC uses the input information from Phase Measurement Units (PMUs) in the system and dispatches supplementary control signals to the available local controllers. The design of the ASC is explained in detail and its performance validated by time domain simulations on a New England test power system (NETPS).展开更多
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r...With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.展开更多
This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schem...This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.展开更多
A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble...A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.展开更多
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not...Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.展开更多
This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown cova...This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown covariance matrix is addressed by focusing on the output data set of the system.Considering that data generated from a Gaussian distribution exhibit ellipsoidal scattering,we first propose the weighted sum of norms(SON)clustering method that prioritizes nearby points,reduces distant point influence,and lowers computational cost.Then,by introducing the weighted maximum likelihood,we propose a semi-definite program(SDP)to detect outliers and reduce their impacts on each cluster.Detecting these weights paves the way to obtain an appropriate covariance of the output noise.Next,two filtering approaches are presented:a cluster-based robust linear filter using the maximum a posterior(MAP)estimation and a clusterbased robust nonlinear filter assuming that output noise distribution stems from some Gaussian noise resources according to the ellipsoidal clusters.At last,simulation results demonstrate the effectiveness of our proposed filtering approaches.展开更多
The classification of functional data has drawn much attention in recent years.The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to a...The classification of functional data has drawn much attention in recent years.The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to achieve better classification accuracy.In this paper,we propose a mean-variance-based(MV)feature weighting method for classifying functional data or functional curves.In the feature extraction stage,each sample curve is approximated by B-splines to transfer features to the coefficients of the spline basis.After that,a feature weighting approach based on statistical principles is introduced by comprehensively considering the between-class differences and within-class variations of the coefficients.We also introduce a scaling parameter to adjust the gap between the weights of features.The new feature weighting approach can adaptively enhance noteworthy local features while mitigating the impact of confusing features.The algorithms for feature weighted K-nearest neighbor and support vector machine classifiers are both provided.Moreover,the new approach can be well integrated into existing functional data classifiers,such as the generalized functional linear model and functional linear discriminant analysis,resulting in a more accurate classification.The performance of the mean-variance-based classifiers is evaluated by simulation studies and real data.The results show that the newfeatureweighting approach significantly improves the classification accuracy for complex functional data.展开更多
Cell migration plays a significant role in physiological and pathological processes.Understanding the characteristics of cell movement is crucial for comprehending biological processes such as cell functionality,cell ...Cell migration plays a significant role in physiological and pathological processes.Understanding the characteristics of cell movement is crucial for comprehending biological processes such as cell functionality,cell migration,and cell–cell interactions.One of the fundamental characteristics of cell movement is the specific distribution of cell speed,containing valuable information that still requires comprehensive understanding.This article investigates the distribution of mean velocities along cell trajectories,with a focus on optimizing the efficiency of cell food search in the context of the entire colony.We confirm that the specific velocity distribution in the experiments corresponds to an optimal search efficiency when spatial weighting is considered.The simulation results indicate that the distribution of average velocity does not align with the optimal search efficiency when employing average spatial weighting.However,when considering the distribution of central spatial weighting,the specific velocity distribution in the experiment is shown to correspond to the optimal search efficiency.Our simulations reveal that for any given distribution of average velocity,a specific central spatial weighting can be identified among the possible central spatial weighting that aligns with the optimal search strategy.Additionally,our work presents a method for determining the spatial weights embedded in the velocity distribution of cell movement.Our results have provided new avenues for further investigation of significant topics,such as relationship between cell behavior and environmental conditions throughout their evolutionary history,and how cells achieve collective cooperation through cell-cell communication.展开更多
We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used ...We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used to deal with strong electron-electron repulsive Hubbard interaction in the effective low-energy t-J model,the superfluid weight of the unconventional superconducting state has been calculated via the linear response theory.An unconventional superconducting state with both spin-singlet and staggered spin-triplet pairs emerges beyond a critical antiferromagnetic coupling interaction,while antiferromagnetism accompanies this state.The superconducting state with only spin-singlet pairs is dominant with paramagnetic phase.The A phase is analogous to the pseudogap phase,which shows that electrons go to form pairs but do not cause a supercurrent.We also show the superfluid behavior of the unconventional superconducting state and its critical temperature.It is proven directly that the flat band can effectively raise the critical temperature of superconductivity.It is implementable to simulate and control strongly-correlated electrons'behavior on the Creutz lattice in the ultracold atoms experiment or other artificial structures.Our results may help the understanding of the interplay between unconventional superconductivity and magnetism.展开更多
The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ...The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the info...The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.展开更多
BACKGROUND The prognostic value of the Systemic Inflammation Response Index(SIRI)in advanced pancreatic cancer is recognized,but its correlation with patients´nutritional status and outcomes remains unexplored.AI...BACKGROUND The prognostic value of the Systemic Inflammation Response Index(SIRI)in advanced pancreatic cancer is recognized,but its correlation with patients´nutritional status and outcomes remains unexplored.AIM To study the prognostic significance of SIRI and weight loss in metastatic pancreatic cancer.METHODS The PANTHEIA-Spanish Society of Medical Oncology(SEOM)study is a multicentric(16 Spanish hospitals),observational,longitudinal,non-interventional initiative,promoted by the SEOM Real World-Evidence work group.This pilot study sought to analyze the association between weight loss and inflammatory status as defined by SIRI.The cohort stems from a proof-of-concept pilot study conducted at one of the coordinating centers.Patients with pathologically confirmed metastatic pancreatic adenocarcinoma,treated from January 2020 to January 2023,were included.The index was calculated using the product of neutrophil and monocyte counts,divided by lymphocyte counts,obtained within 15 days before initiation chemotherapy.This study evaluated associations between overall survival(OS),SIRI and weight loss.RESULTS A total of 50 patients were included.66%of these patients were male and the median age was 66 years.Metastasis sites:36%liver,12%peritoneal carcinomatosis,10%lung,and 42%multiple locations.Regarding the first line palliative chemotherapy treatments:50%received gemcitabine plus nab-paclitaxel;28%,modified fluorouracil,leucovorin,irinotecan and oxaliplatin,and 16%were administered gemcitabine.42%had a weight loss>5%in the three months(mo)preceding diagnosis.21 patients with a SIRI≥2.3×10^(3)/L exhibited a trend towards a lower median OS compared to those with a SIRI<2.3×10^(3)/L(4 vs 18 mo;P<0.000).Among 21 patients with>5%weight loss before diagnosis,the median OS was 6 mo,in contrast to 19 mo for those who did not experience such weight loss(P=0.003).Patients with a weight loss>5%showed higher SIRI levels.This difference was statistically significant(P<0.000).For patients with a SIRI<2.3×10^(3)/L,those who did not lose>5%of their weight had an OS of 20 mo,compared to 11 mo for those who did(P<0.001).No association was found between carbohydrate antigen 19-9 levels≥1000 U/mL and weight loss.CONCLUSION A higher SIRI was correlated with decreased survival rates in patients with metastatic pancreatic cancer and associated with weight loss.An elevated SIRI is suggested as a predictor of survival,emphasizing the need for prospective validation in the upcoming PANTHEIA-SEOM study.展开更多
BACKGROUND The benefit of adjuvant chemotherapy(ACT)for patients with no evidence of disease after pulmonary metastasis resection(PM)from colorectal cancer(CRC)remains controversial.AIM To assess the efficacy of ACT i...BACKGROUND The benefit of adjuvant chemotherapy(ACT)for patients with no evidence of disease after pulmonary metastasis resection(PM)from colorectal cancer(CRC)remains controversial.AIM To assess the efficacy of ACT in patients after PM resection for CRC.METHODS This study included 96 patients who underwent pulmonary metastasectomy for CRC at a single institution between April 2008 and July 2023.The primary end-point was overall survival(OS);secondary endpoints included cancer-specific survival(CSS)and disease-free survival(DFS).An inverse probability of treat-ment-weighting(IPTW)analysis was conducted to address indication bias.Sur-vival outcomes compared using Kaplan-Meier curves,log-rank test,Cox regre-ssion and confirmed by propensity score-matching(PSM).RESULTS With a median follow-up of 27.5 months(range,18.3-50.4 months),the 5-year OS,CSS and DFS were 72.0%,74.4%and 51.3%,respectively.ACT had no significant effect on OS after PM resection from CRC[original cohort:P=0.08;IPTW:P=0.15].No differences were observed for CSS(P=0.12)and DFS(P=0.68)between the ACT and non-ACT groups.Multivariate analysis showed no association of ACT with better survival,while sublobar resection(HR=0.45;95%CI:0.20-1.00,P=0.049)and longer disease-free interval(HR=0.45;95%CI:0.20-0.98,P=0.044)were associated with improved survival.CONCLUSION ACT does not improve survival after PM resection for CRC.Further well-designed randomized controlled trials are needed to determine the optimal ACT regimen and duration.展开更多
Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple compleme...Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple complementary energy resources,a comprehensive assessment of the energy efficiency is of paramount importance.First,a multi-dimensional evaluation system with four primary indexes of energy utilization,environmental protection,system operation,and economic efficiency and 21 secondary indexes is constructed to comprehensively portray the UES.Considering that the evaluation system may contain a large number of indexes and that there is overlapping information among them,an energy efficiency evaluation method based on data processing,dimensionality reduction,integration of combined weights,and gray correlation analysis is proposed.This method can effectively reduce the number of calculations and improve the accuracy of energy efficiency assessments.Third,a demonstration project for a UES in China is presented.The energy efficiency of each scenario is assessed using six operational scenarios.The results show that Scenario 5,in which parks operate independently and investors build shared energy-storage equipment,has the best results and is best suited for green and low-carbon development.The results of the comparative assessment methods show that the proposed method provides a good energy efficiency assessment.This study provides a reference for the optimal planning,construction,and operation of UESs with multiple energy sources.展开更多
Nowadays,the use of renewable energies,especially wind,solar,and biomass,is essential as an effective solution to address global environmental and economic challenges.Therefore,the current study examines the energy-ec...Nowadays,the use of renewable energies,especially wind,solar,and biomass,is essential as an effective solution to address global environmental and economic challenges.Therefore,the current study examines the energy-economic-environmental analysis of off-grid electricity generation systems using solar panels,wind turbines,and biomass generators in various weather conditions in Iran.Simulations over 25 years were conducted using HOMER v2.81 software,aiming to determine the potential of each region and find the lowest cost of electricity production per kWh.In the end,to identify the most suitable location,the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method was employed to rank different stations based on simulation output parameters and some other influential factors.Considering the evaluation of various parameters,the stations in Yazd,Marand,and Dezful achieved the best results,while the stations in Ramsar,Shahrekord,and Gonbad presented the least favorable outcomes.In Yazd,the wind turbine is an economic priority,and a 100 kW wind turbine is utilized in the optimal system.In Yazd,where the simultaneous use of renewable energies is most prominent,the lowest pollutant production occurred with a quantity of 1174 kg/year.Annual energy losses are highest in Jask station and lowest in Yazd.展开更多
The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors ...The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.展开更多
In this study, a blockchain based federated learning system using an enhanced weighted mean vector optimization algorithm, known as EINFO, is proposed. The proposed EINFO addresses the limitations of federated averagi...In this study, a blockchain based federated learning system using an enhanced weighted mean vector optimization algorithm, known as EINFO, is proposed. The proposed EINFO addresses the limitations of federated averaging during global update and model training, where data is unevenly distributed among devices and there are variations in the number of data samples. Using a well-defined structure and updating the vector positions by local searching, vector combining, and updating rules, the EINFO algorithm maximizes the shared model parameters. In order to increase the exploration and exploitation capabilities, the model convergence rate is improved and new vectors are generated through the use of a weighted mean vector based on the inverse square law. To choose validators, miners, and to propagate new blocks, a delegated proof of stake based on the reliability of blockchain nodes is suggested. Federated learning is included into the blockchain to protect nodes from both external and internal threats. To determine how well the suggested system performs in relation to current models in the literature, extensive simulations are run. The simulation results show that the proposed system outperforms existing schemes in terms of accuracy, sensitivity and specificity.展开更多
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
基金This work was supported by the Natural Science Foundation of Hunan Province(No.04JJ6033) and Scientific Research Fund of Hunan ProvincialEducation Department(No. 03C066).
文摘A PI control strategy based on fuzzy set-point weighting following was proposed for the active damping control of a hydraulic crane boom system (HCBS). Two valve-controlled PI controllers, which include a proportional feedforward controller based on fuzzy set-point weighting following and a limited semi-integrator(LSI), are designed respectively. LSI is used to limit output signal and to prevent wind up at the low frequency of the spectrum. By using a range camera and an electronic feedback control, the tip damping on the HCBS can be adjusted artificially. A collaborative control simulation technique of HOPSAN and MATLAB/SIMULINK is applied to the controller design. Simulation results show that the proposed PI control system has less overshoot as well as faster response. The tip damping on the HCBS during operation is improved.
文摘The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission delays. The paper uses an LMI-based iterative nonlinear optimization algorithm to establish a method of designing state-feedback controllers for power systems with a time-varying delay. This method is based on the delay-dependent stabilization conditions obtained by the improved free weighting matrix (IFWM) approach. In the stabilization conditions, the upper bound of feedback signal’s transmission delays is taken into consideration. Combining theoriesof state feedback control and state observer, the ASC is designed and time-delay output feedback robust controller is realized for power system. The ASC uses the input information from Phase Measurement Units (PMUs) in the system and dispatches supplementary control signals to the available local controllers. The design of the ASC is explained in detail and its performance validated by time domain simulations on a New England test power system (NETPS).
基金This work was supported by the National Natural Science Foundation of China(Grant No.51991361)the foundation of China University of Petroleum(Beijing)(Grant No.2462021YXZZ002).
文摘With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.
文摘This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB3900701)the Science and Technology Plan Project of the State Administration for Market Regulation of China (Grant No.2023MK178)the National Natural Science Foundation of China (Grant No.42227802)。
文摘A redundant-subspace-weighting(RSW)-based approach is proposed to enhance the frequency stability on a time scale of a clock ensemble.In this method,multiple overlapping subspaces are constructed in the clock ensemble,and the weight of each clock in this ensemble is defined by using the spatial covariance matrix.The superimposition average of covariances in different subspaces reduces the correlations between clocks in the same laboratory to some extent.After optimizing the parameters of this weighting procedure,the frequency stabilities of virtual clock ensembles are significantly improved in most cases.
基金supported by the National Natural Science Foundation of China(42377354)the Natural Science Foundation of Hubei province(2024AFB951)the Chunhui Plan Cooperation Research Project of the Chinese Ministry of Education(202200199).
文摘Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.
文摘This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown covariance matrix is addressed by focusing on the output data set of the system.Considering that data generated from a Gaussian distribution exhibit ellipsoidal scattering,we first propose the weighted sum of norms(SON)clustering method that prioritizes nearby points,reduces distant point influence,and lowers computational cost.Then,by introducing the weighted maximum likelihood,we propose a semi-definite program(SDP)to detect outliers and reduce their impacts on each cluster.Detecting these weights paves the way to obtain an appropriate covariance of the output noise.Next,two filtering approaches are presented:a cluster-based robust linear filter using the maximum a posterior(MAP)estimation and a clusterbased robust nonlinear filter assuming that output noise distribution stems from some Gaussian noise resources according to the ellipsoidal clusters.At last,simulation results demonstrate the effectiveness of our proposed filtering approaches.
基金the National Social Science Foundation of China(Grant No.22BTJ035).
文摘The classification of functional data has drawn much attention in recent years.The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to achieve better classification accuracy.In this paper,we propose a mean-variance-based(MV)feature weighting method for classifying functional data or functional curves.In the feature extraction stage,each sample curve is approximated by B-splines to transfer features to the coefficients of the spline basis.After that,a feature weighting approach based on statistical principles is introduced by comprehensively considering the between-class differences and within-class variations of the coefficients.We also introduce a scaling parameter to adjust the gap between the weights of features.The new feature weighting approach can adaptively enhance noteworthy local features while mitigating the impact of confusing features.The algorithms for feature weighted K-nearest neighbor and support vector machine classifiers are both provided.Moreover,the new approach can be well integrated into existing functional data classifiers,such as the generalized functional linear model and functional linear discriminant analysis,resulting in a more accurate classification.The performance of the mean-variance-based classifiers is evaluated by simulation studies and real data.The results show that the newfeatureweighting approach significantly improves the classification accuracy for complex functional data.
基金Project supported by the National Natural Science Foundation of China(Grant No.31971183).
文摘Cell migration plays a significant role in physiological and pathological processes.Understanding the characteristics of cell movement is crucial for comprehending biological processes such as cell functionality,cell migration,and cell–cell interactions.One of the fundamental characteristics of cell movement is the specific distribution of cell speed,containing valuable information that still requires comprehensive understanding.This article investigates the distribution of mean velocities along cell trajectories,with a focus on optimizing the efficiency of cell food search in the context of the entire colony.We confirm that the specific velocity distribution in the experiments corresponds to an optimal search efficiency when spatial weighting is considered.The simulation results indicate that the distribution of average velocity does not align with the optimal search efficiency when employing average spatial weighting.However,when considering the distribution of central spatial weighting,the specific velocity distribution in the experiment is shown to correspond to the optimal search efficiency.Our simulations reveal that for any given distribution of average velocity,a specific central spatial weighting can be identified among the possible central spatial weighting that aligns with the optimal search strategy.Additionally,our work presents a method for determining the spatial weights embedded in the velocity distribution of cell movement.Our results have provided new avenues for further investigation of significant topics,such as relationship between cell behavior and environmental conditions throughout their evolutionary history,and how cells achieve collective cooperation through cell-cell communication.
基金Project supported by the Natural Science Basic Research Program of Shaanxi(Program Nos.2023KJXX-064 and 2021JQ-748)the National Natural Science Foundation of China(Grant Nos.11804213 and 12174238)Scientific Research Foundation of Shaanxi University of Technology(Grant No.SLGRCQD2006).
文摘We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used to deal with strong electron-electron repulsive Hubbard interaction in the effective low-energy t-J model,the superfluid weight of the unconventional superconducting state has been calculated via the linear response theory.An unconventional superconducting state with both spin-singlet and staggered spin-triplet pairs emerges beyond a critical antiferromagnetic coupling interaction,while antiferromagnetism accompanies this state.The superconducting state with only spin-singlet pairs is dominant with paramagnetic phase.The A phase is analogous to the pseudogap phase,which shows that electrons go to form pairs but do not cause a supercurrent.We also show the superfluid behavior of the unconventional superconducting state and its critical temperature.It is proven directly that the flat band can effectively raise the critical temperature of superconductivity.It is implementable to simulate and control strongly-correlated electrons'behavior on the Creutz lattice in the ultracold atoms experiment or other artificial structures.Our results may help the understanding of the interplay between unconventional superconductivity and magnetism.
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901,2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495,51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation of China(Grant No.2021-A1515012286)Science and Technology Plan Project of Fuzhou City of China(Grant No.2022-P-022).
文摘The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
基金New Brunswick Innovation Foundation(NBIF)for the financial support of the global project.
文摘The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.
文摘BACKGROUND The prognostic value of the Systemic Inflammation Response Index(SIRI)in advanced pancreatic cancer is recognized,but its correlation with patients´nutritional status and outcomes remains unexplored.AIM To study the prognostic significance of SIRI and weight loss in metastatic pancreatic cancer.METHODS The PANTHEIA-Spanish Society of Medical Oncology(SEOM)study is a multicentric(16 Spanish hospitals),observational,longitudinal,non-interventional initiative,promoted by the SEOM Real World-Evidence work group.This pilot study sought to analyze the association between weight loss and inflammatory status as defined by SIRI.The cohort stems from a proof-of-concept pilot study conducted at one of the coordinating centers.Patients with pathologically confirmed metastatic pancreatic adenocarcinoma,treated from January 2020 to January 2023,were included.The index was calculated using the product of neutrophil and monocyte counts,divided by lymphocyte counts,obtained within 15 days before initiation chemotherapy.This study evaluated associations between overall survival(OS),SIRI and weight loss.RESULTS A total of 50 patients were included.66%of these patients were male and the median age was 66 years.Metastasis sites:36%liver,12%peritoneal carcinomatosis,10%lung,and 42%multiple locations.Regarding the first line palliative chemotherapy treatments:50%received gemcitabine plus nab-paclitaxel;28%,modified fluorouracil,leucovorin,irinotecan and oxaliplatin,and 16%were administered gemcitabine.42%had a weight loss>5%in the three months(mo)preceding diagnosis.21 patients with a SIRI≥2.3×10^(3)/L exhibited a trend towards a lower median OS compared to those with a SIRI<2.3×10^(3)/L(4 vs 18 mo;P<0.000).Among 21 patients with>5%weight loss before diagnosis,the median OS was 6 mo,in contrast to 19 mo for those who did not experience such weight loss(P=0.003).Patients with a weight loss>5%showed higher SIRI levels.This difference was statistically significant(P<0.000).For patients with a SIRI<2.3×10^(3)/L,those who did not lose>5%of their weight had an OS of 20 mo,compared to 11 mo for those who did(P<0.001).No association was found between carbohydrate antigen 19-9 levels≥1000 U/mL and weight loss.CONCLUSION A higher SIRI was correlated with decreased survival rates in patients with metastatic pancreatic cancer and associated with weight loss.An elevated SIRI is suggested as a predictor of survival,emphasizing the need for prospective validation in the upcoming PANTHEIA-SEOM study.
基金Supported by the National Project for Clinical Key Specialty Development.
文摘BACKGROUND The benefit of adjuvant chemotherapy(ACT)for patients with no evidence of disease after pulmonary metastasis resection(PM)from colorectal cancer(CRC)remains controversial.AIM To assess the efficacy of ACT in patients after PM resection for CRC.METHODS This study included 96 patients who underwent pulmonary metastasectomy for CRC at a single institution between April 2008 and July 2023.The primary end-point was overall survival(OS);secondary endpoints included cancer-specific survival(CSS)and disease-free survival(DFS).An inverse probability of treat-ment-weighting(IPTW)analysis was conducted to address indication bias.Sur-vival outcomes compared using Kaplan-Meier curves,log-rank test,Cox regre-ssion and confirmed by propensity score-matching(PSM).RESULTS With a median follow-up of 27.5 months(range,18.3-50.4 months),the 5-year OS,CSS and DFS were 72.0%,74.4%and 51.3%,respectively.ACT had no significant effect on OS after PM resection from CRC[original cohort:P=0.08;IPTW:P=0.15].No differences were observed for CSS(P=0.12)and DFS(P=0.68)between the ACT and non-ACT groups.Multivariate analysis showed no association of ACT with better survival,while sublobar resection(HR=0.45;95%CI:0.20-1.00,P=0.049)and longer disease-free interval(HR=0.45;95%CI:0.20-0.98,P=0.044)were associated with improved survival.CONCLUSION ACT does not improve survival after PM resection for CRC.Further well-designed randomized controlled trials are needed to determine the optimal ACT regimen and duration.
基金supported by the National Natural Science Foundation of China under Grant 51567002 and Grant 50767001.
文摘Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple complementary energy resources,a comprehensive assessment of the energy efficiency is of paramount importance.First,a multi-dimensional evaluation system with four primary indexes of energy utilization,environmental protection,system operation,and economic efficiency and 21 secondary indexes is constructed to comprehensively portray the UES.Considering that the evaluation system may contain a large number of indexes and that there is overlapping information among them,an energy efficiency evaluation method based on data processing,dimensionality reduction,integration of combined weights,and gray correlation analysis is proposed.This method can effectively reduce the number of calculations and improve the accuracy of energy efficiency assessments.Third,a demonstration project for a UES in China is presented.The energy efficiency of each scenario is assessed using six operational scenarios.The results show that Scenario 5,in which parks operate independently and investors build shared energy-storage equipment,has the best results and is best suited for green and low-carbon development.The results of the comparative assessment methods show that the proposed method provides a good energy efficiency assessment.This study provides a reference for the optimal planning,construction,and operation of UESs with multiple energy sources.
文摘Nowadays,the use of renewable energies,especially wind,solar,and biomass,is essential as an effective solution to address global environmental and economic challenges.Therefore,the current study examines the energy-economic-environmental analysis of off-grid electricity generation systems using solar panels,wind turbines,and biomass generators in various weather conditions in Iran.Simulations over 25 years were conducted using HOMER v2.81 software,aiming to determine the potential of each region and find the lowest cost of electricity production per kWh.In the end,to identify the most suitable location,the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method was employed to rank different stations based on simulation output parameters and some other influential factors.Considering the evaluation of various parameters,the stations in Yazd,Marand,and Dezful achieved the best results,while the stations in Ramsar,Shahrekord,and Gonbad presented the least favorable outcomes.In Yazd,the wind turbine is an economic priority,and a 100 kW wind turbine is utilized in the optimal system.In Yazd,where the simultaneous use of renewable energies is most prominent,the lowest pollutant production occurred with a quantity of 1174 kg/year.Annual energy losses are highest in Jask station and lowest in Yazd.
基金Under the auspices of National Natural Science Foundation of China (No.41977402,41977194)。
文摘The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.
文摘In this study, a blockchain based federated learning system using an enhanced weighted mean vector optimization algorithm, known as EINFO, is proposed. The proposed EINFO addresses the limitations of federated averaging during global update and model training, where data is unevenly distributed among devices and there are variations in the number of data samples. Using a well-defined structure and updating the vector positions by local searching, vector combining, and updating rules, the EINFO algorithm maximizes the shared model parameters. In order to increase the exploration and exploitation capabilities, the model convergence rate is improved and new vectors are generated through the use of a weighted mean vector based on the inverse square law. To choose validators, miners, and to propagate new blocks, a delegated proof of stake based on the reliability of blockchain nodes is suggested. Federated learning is included into the blockchain to protect nodes from both external and internal threats. To determine how well the suggested system performs in relation to current models in the literature, extensive simulations are run. The simulation results show that the proposed system outperforms existing schemes in terms of accuracy, sensitivity and specificity.