Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ...Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.展开更多
In the measurement of liquid level in industrial site environment,noise interference can affect the measurement accuracy.In order to improve the measurement accuracy of liquid level in the viscous state,a nuclear radi...In the measurement of liquid level in industrial site environment,noise interference can affect the measurement accuracy.In order to improve the measurement accuracy of liquid level in the viscous state,a nuclear radiation level measurement system based on the least mean square(LMS)filtering correction method is designed.The system uses STM32F103 as the control core and adopts HART bus HT1200M chip for remote signal transmission and reception.The adaptive LMS algorithm can be used for more accurate filtering,calculating iterative weight vector,updating weighted coefficient,effectively removing system measurement noise and improving the measurement accuracy.The results show that the nuclear radiation level gauge based on normalized LMS can correct the measurement system accuracy in adaptive rules,improve the measurement accuracy to meet the requirements of industrial field environment for liquid level measurement and enhance the industrial automation control degree.展开更多
基金Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1445)。
文摘Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.
基金National Natural Science Foundation of China(Nos.61761027,61261029)
文摘In the measurement of liquid level in industrial site environment,noise interference can affect the measurement accuracy.In order to improve the measurement accuracy of liquid level in the viscous state,a nuclear radiation level measurement system based on the least mean square(LMS)filtering correction method is designed.The system uses STM32F103 as the control core and adopts HART bus HT1200M chip for remote signal transmission and reception.The adaptive LMS algorithm can be used for more accurate filtering,calculating iterative weight vector,updating weighted coefficient,effectively removing system measurement noise and improving the measurement accuracy.The results show that the nuclear radiation level gauge based on normalized LMS can correct the measurement system accuracy in adaptive rules,improve the measurement accuracy to meet the requirements of industrial field environment for liquid level measurement and enhance the industrial automation control degree.