Structural components made of steel are used in several areas and require welding for assembly. In some situations, repair of the weld bead, also performed by electric arc welding, can be used to correct, and eliminat...Structural components made of steel are used in several areas and require welding for assembly. In some situations, repair of the weld bead, also performed by electric arc welding, can be used to correct, and eliminate any discontinuities. However, electric arc welding causes the presence of residual stresses in the joint, which can impair its performance and not meet specific design requirements. In this paper, welded joints made of ASTM A 516 GR 70 steel plates, with a thickness of 30.5 mm, welded by the MAG—Metal Active Gas process (20% CO<sub>2</sub>) and using a “K” groove were analysed. The joints were manufactured with seven welding passes on each side of the groove. After welding, one batch underwent repair of the bead by TIG welding (Tungsten Insert Gas) and another batch underwent two repairs by TIG welding. Were presented results of the behaviour of the residual stress profile measured by X-ray diffraction and the Vickers microhardness profile in the joints as well the fracture toughness in the conditions only welded and submitted to repairs. The results indicated that the greater number of repair passes reduced the residual compressive stress values obtained in the material manufacturing process and caused a stabilization on the Vickers hardness values. It was concluded that compressive residual stresses did not play a major role in the R-curve results. The presence of discontinuities in the welded joint caused greater influence on the behaviour of the R curve.展开更多
Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-wel...Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-welding residual stress and deformation were definitely different among the four welding sequences.The results showed that the highest temperature in Solution A was approximately 200℃higher than the melting point of base metal.High residual stress was resulted from this large temperature gradient and mainly concentrated on the welding vicinity between beam and crash box.The welding deformation primarily occurred in both of the contraction of two-ends of the beam and the self-contraction of crash box.Compared with other welding sequences,the residual stress in Solution A was the smallest,whereas the welding deformation was the largest.However,the optimal sequence was Solution B because of the effective reduction of residual stress and good assembly requirements.展开更多
The hydrogen distribution of 16MnR steel weldment in hydrogen contained environment was calculated using the finite element method ( FEM). The effect of welding residual stress on hydrogen diffusion has been discuss...The hydrogen distribution of 16MnR steel weldment in hydrogen contained environment was calculated using the finite element method ( FEM). The effect of welding residual stress on hydrogen diffusion has been discussed using a 3-D sequential coupling finite element analysis procedure complied by Abaqus code. The hydrogen diffusion coefficient in weld metal, the heat affected zone (HAZ), and the base metal of the 16MnR steel weldment were measured using the electrochemical permeation technique. The hydrogen diffusion without the effect of stress was also calculated and compared. Owing to the existence of welding residual stress, the hydrogen concentration was obviously increased and the hydrogen wouM diffuse and accumulate in the higher stress region.展开更多
The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not h...The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not hot cracking will occur. With rigid restraint hot cracking (crater cracking) will occur at the arc-stopping end, and such cracking usually will not occur without external restraint. But under restraint-free condition it is easy for terminal cracks to occur.展开更多
The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite...The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite simulation method. The simulation results show that the weld seam undergoes strain hardening in the temperature range of 180-250 ℃, however, it exhibits strain softening at temperature above 250 ℃ during welding heating and cooling process. As a result, the strain hardening and strain softening effects counteract each other, introducing slightly influence on the welding residual stress, residual plastic strain and distortion. The welding longitudinal residual stress was determined by ultrasonic stress measurement method for the flat plates of A7N01-T4 aluminum alloy. The simulation results are well accordant with test ones.展开更多
Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residu...Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residual stress distribution of the welded joint.It has always been the focus to find a simple and feasible method for residual stress testing to quickly and accurately obtain the residual stress distribution of welded joints.The mechanical measurement method has high measurement accuracy,convenient and easy operation,but it will cause certain damage to the components.Physical measurement method can avoid damage to components,but its test cost is usually high,and its measurement accuracy can also be affected by the material microstructure characteristics of welded components.Based on the advantages and disadvantages of these two residual stress test methods,a modal test method is proposed.This method is a non-destructive measurement method.Based on the mathematical relationship between the residual stress of the welded structure and the natural frequency(mathematical model),the natural frequency is measured through the modal test to calculate the residual stress quickly.However,it is difficult to establish a mathematical model with this method,and it is not suitable for realization.展开更多
In order to control welding stress and distortion, a new welding with trailing peening method based on the electromagnetic hammer was developed. This method uses the idea of constant frequency pulse width modulation f...In order to control welding stress and distortion, a new welding with trailing peening method based on the electromagnetic hammer was developed. This method uses the idea of constant frequency pulse width modulation for designing the control circuit of peening force and peening freqneney. The peening force can be adjusted between 0 and 1 000 N and the peening frequency ranges from 0 to 25 Hz. Peening force is applied to the weld metal and the weld toe during the welding by peening head. The experiments show that the method is portable and flexible, and it can adjust the distribution state of welding residual stress, making grain refinement. When the peening force is changed to 700 N and the peening frequency to 3 Hz, both the transverse and longitudinal residual stresses will drop obviously.展开更多
The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under differen...The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used.展开更多
With the resistance to stress corrosion of the base metal as a reference, the contrast result of stress corrosion cracking ( SCC) susceptibility of aluminum-copper alloy 2219 and 2014 welded joints under different w...With the resistance to stress corrosion of the base metal as a reference, the contrast result of stress corrosion cracking ( SCC) susceptibility of aluminum-copper alloy 2219 and 2014 welded joints under different welding processes ( VP-TIG welding, HF-TIG hybrid welding, laser-TIG hybrid welding and laser HF-TIG hybrid welding) is obtained via the slow strain rate testing ( SSRT) , scanning electron microscope ( SEM) and microstructure observation auxiliary technologies. Test results show that the joints of aluminum alloy 2219, welded by hybrid welding processes, have superior resistance to stress corrosion compared to those welded by the VP-TIG welding process in varying degrees, especially, the joint welded by the laser HF-TIG hybrid welding process, where the resistance to stress corrosion is almost the same as that of the base material. However, the HF or laser hybrid welding effect is not significant under the same welding conditions for welded joints of aluminum alloy 2014.展开更多
The defect assessment in butt-welded joint of ASTM A36 steel plates and 7075-T7351 aluminum alloy plates containing transverse through thickness crack was analyzed using SINTAP procedure and FEA incorporating weld ind...The defect assessment in butt-welded joint of ASTM A36 steel plates and 7075-T7351 aluminum alloy plates containing transverse through thickness crack was analyzed using SINTAP procedure and FEA incorporating weld induced residual stresses. Weld induced longitudinal residual stress profile can be obtained through SINTAP procedure, FEA or experimental analysis. This residual stress profile can be fitted with the trapezoidal residual stress profile available in SINTAP. For three different cases, crack length and residual stress intensity factor (SIF) are calculated and its comparison with the results obtained through FEA is plotted with respect to crack length. The stress intensity factor for mechanical loading is also plotted in the same graph. Using this graphical plot, the total SIF, including residual stress and mechanical loading, can be calculated for any particular crack size. The total SIF can be compared with the fracture toughness of the material for damage tolerance analysis. Also a failure assessment diagram is drawn for welded 7075-T7351 aluminum alloy plates with different crack sizes for as-welded (only residual stress) and mechanical loading along with the existing weld induced residual stresses to show the safety level for a particular crack size and mechanical loading.展开更多
A numerical analysis method was proposed to predict the welding residual stress in 2.25Cr-1Mo steel pipe considering solid-state phase transformations. A thermal elastic plastic finite element (FE) model considering e...A numerical analysis method was proposed to predict the welding residual stress in 2.25Cr-1Mo steel pipe considering solid-state phase transformations. A thermal elastic plastic finite element (FE) model considering effects of martensite transformation was developed based on commercial ABAQUS software. Continuous cooling transformation (CCT) diagrams were employed to simulate the fraction of martensite in fusion zone, coarse-grained heat affected zone and fine-grained heat affected zone. The Koistinen-Marburger relationship was used to trace the formation of martensite. The effects of both volume change and yield strength change due to phase transformation on welding residual stress were considered using the proposed FE model. The result shows that the phase transformation has significant effects on the welding residual stress in multi-pass butt weld of pipe. The predicted simulation results by the proposed numerical method are generally in good agreement with experimental results.展开更多
To fit in with the strict geometrical integrity and ensure dimensionally consistent fabrication of the welded aerospace structures. the low stress no distortion(LSND)welding, a technique for thin materials, was poinee...To fit in with the strict geometrical integrity and ensure dimensionally consistent fabrication of the welded aerospace structures. the low stress no distortion(LSND)welding, a technique for thin materials, was poineered and developed to provide an ininprocess active control of welding distortion. Satisfactory distortion free results were achieved in both welding of jet engine cases of heat-resistance alloys and rocket fuel tanks of aluminuim alloys, and there need no. reworking operations for post-weld distortion correction. Based on the 'static' method a newly developed method for dvnamic in-process control is also discussed in this paper. Both methods provide quanutiative in-process control of incompatible strains in weld zone and low stress no distortion welding results.展开更多
The fundamentals of acoustoelastic theory and the principle of acoustoelastic nondestructive stress analysis related ultrasonic test Instrument for weld residual stresses are described. The weld residual stress distr...The fundamentals of acoustoelastic theory and the principle of acoustoelastic nondestructive stress analysis related ultrasonic test Instrument for weld residual stresses are described. The weld residual stress distribution in butt-welded joints was measured by the acoustoelastic stress analysis, which uses the pulse echo overlap method to measure the speed difference in ultrasonic shear waves polarized in principal directions, and a new method of evaluating the material anisotropy is proposed. The results indicate that the anisotropic coefficient of the welded metal is much greater than that of the parent metal. the longitudinal residual stress distributions measured by the acoustoelastic technique are coincident with those obtained by the theoretical analysis, and the measuring accuracy is much greater than that obtained by the resistance strain gauge.展开更多
It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformat...It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformation during multipass welding. In this study, a three dimension numerical model of a sixteen-pass double V-groove welded joint with 50 mm plate is developed to compute the stress field and deformation by using multiple CPU parallel processing technology. The following factors such as the non-linear of temperature, heat radiation, filling of material step by step and so on are considered. Distribution and evolution law of welding stress in the transverse and longitudinal section is analyzed in this paper, and the interpnss stresses are studied also. At the same time the evolution course of angular deformation amount is analyzed, and the experimental results show that the calculated resuhs accord with the measured results of angular deformation.展开更多
To analyze the effects of width and thickness of each composition element of mixed steel U-rib-stiffened plates on the welding residual stress distribution, the distribution of the U-rib and the plate residual stress ...To analyze the effects of width and thickness of each composition element of mixed steel U-rib-stiffened plates on the welding residual stress distribution, the distribution of the U-rib and the plate residual stress was calculated using a simplified calculation method. The method involved welding the mixed steel U-rib-stiffened plates for a structure with different sizes and different strength ratios of U-rib to plate. Based on a welding residual stress numerical simulation method validated by the blind hole method test, the distribution law of the mixed steel U-rib stiffened plate was studied. The results showed that the change of plate width has little impact on the welding residual stress and that the ratio of the thicknesses of the plate to U-rib stiffeners, the thickness of the plate, and the thickness of the U-rib has a great influence on the distribution of the welding residual stress. The thickness of plate and steel strength also greatly influenced the distribution width of the residual tensile stress. While analyzing the compression capacity of U-rib-stiffened plates, the simplified distribution of welding residual stress was used.展开更多
The blind-hole method is the most widely used approach to experimentally determine the distribution of residual stress. This paper aims to improve test accuracy of welding residual stress and conducts an experimental ...The blind-hole method is the most widely used approach to experimentally determine the distribution of residual stress. This paper aims to improve test accuracy of welding residual stress and conducts an experimental study on the strain release factors involved when using the blind-hole method for Q235 and Q345, two steels commonly used in building structures. The ranges of strain release factors A and B in the elastic stage, the effects of strain release factors on residual stress calculated values, and the plastic corrected strain release factors are analyzed considering of the effect of plastic deformation around the blind hole on measurement accuracy. Finally, a simplified calculation formula to determine strain release factors is proposed for use with the blind-hole method. Results show that in the elastic stage, strain release factor A for Q235 and Q345 ranges from-0.399 to-0.525 and strain release factor B from-0.791 to-0.960. Changing the strain release factors A and B shows that calculated residual tensile stress varies in relation to a decrease in both factor values. However, there is a increase in calculated residual compressive stress with a decrease in the strain release factor A value, but there is an decrease with a decrease in strain release factor B value. Calculated residual stress applied to elastic strain release factors is compared with that applied to amended plastic strain release factors for Q235 steel. The maximum deviation between calculated residual stress and test stress is reduced from 21.1 to 1.0%,and for Q345 steel from 26.5 to 1.2%. It is thus evident that the plastic correction formula proposed in this paper can be used in calculations when conducting a residual stress test.展开更多
The feasibility of reducing the welding residual stress through local tensile loading is verified using the finite element method (FEM). The mechanism and effect of reducing stress during and after welding are compa...The feasibility of reducing the welding residual stress through local tensile loading is verified using the finite element method (FEM). The mechanism and effect of reducing stress during and after welding are compared. The results show that the effect of the former is better than that of the latter. Applying an external tension load of 200 MPa after welding, the maximum residual stress drops down from 235 MPa to about 90 MPa, moreover, it decreases to 30MPa when an external tension load of 200 MPa is applied during welding.展开更多
The objective of this study is to investigate the influence of post weld heat treatment (PWHT) on the distribution of residual stress in welded pipes with large thickness. The detailed pass-by-pass finite element si...The objective of this study is to investigate the influence of post weld heat treatment (PWHT) on the distribution of residual stress in welded pipes with large thickness. The detailed pass-by-pass finite element simulation was developed to study the residual stress in narrow gap multipass welding of pipes with a wall thickness of 150 mm and 89 weld beads. The effect of PWHT on welding residual stress was also investigated by means of numerical analysis. The simulated results show that the hoop stress is tensile stress in the weld region and compressive stress in the parent metal areas adjacent to weld seam. After heat treatment, the residual stresses decrease substantially, and the simulated residual stress is validated by the experimental one. The distribution of the through-wall axial residual stress along the weld center line is a self-equilibrating type.展开更多
A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-de...A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-designed test setup.Experiments are conducted on the fishbone shaped specimen under conventional welding and welding with various pre-stress values.The experimental results turn out that,the initiation rate of the weld hot cracks decreases with increasing values of the compressive pre-stress.When the pre-stress reaches 0.3-0.4 of the yield stress,the cracks even disappear.In mechanical viewpoint,the researches here develop a new way to control weld cracks.展开更多
Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue disruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-weld...Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue disruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-welding-heating treatment (AWHT) and explosion treatment (ET) are presented. The results show that they are good ways to resisting SCC on the welded SS400 steel or other components.展开更多
文摘Structural components made of steel are used in several areas and require welding for assembly. In some situations, repair of the weld bead, also performed by electric arc welding, can be used to correct, and eliminate any discontinuities. However, electric arc welding causes the presence of residual stresses in the joint, which can impair its performance and not meet specific design requirements. In this paper, welded joints made of ASTM A 516 GR 70 steel plates, with a thickness of 30.5 mm, welded by the MAG—Metal Active Gas process (20% CO<sub>2</sub>) and using a “K” groove were analysed. The joints were manufactured with seven welding passes on each side of the groove. After welding, one batch underwent repair of the bead by TIG welding (Tungsten Insert Gas) and another batch underwent two repairs by TIG welding. Were presented results of the behaviour of the residual stress profile measured by X-ray diffraction and the Vickers microhardness profile in the joints as well the fracture toughness in the conditions only welded and submitted to repairs. The results indicated that the greater number of repair passes reduced the residual compressive stress values obtained in the material manufacturing process and caused a stabilization on the Vickers hardness values. It was concluded that compressive residual stresses did not play a major role in the R-curve results. The presence of discontinuities in the welded joint caused greater influence on the behaviour of the R curve.
基金Projects(31665004,31715011) supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University,ChinaProject(15C0450) supported by the Educational Commission of Hunan Province of China
文摘Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-welding residual stress and deformation were definitely different among the four welding sequences.The results showed that the highest temperature in Solution A was approximately 200℃higher than the melting point of base metal.High residual stress was resulted from this large temperature gradient and mainly concentrated on the welding vicinity between beam and crash box.The welding deformation primarily occurred in both of the contraction of two-ends of the beam and the self-contraction of crash box.Compared with other welding sequences,the residual stress in Solution A was the smallest,whereas the welding deformation was the largest.However,the optimal sequence was Solution B because of the effective reduction of residual stress and good assembly requirements.
文摘The hydrogen distribution of 16MnR steel weldment in hydrogen contained environment was calculated using the finite element method ( FEM). The effect of welding residual stress on hydrogen diffusion has been discussed using a 3-D sequential coupling finite element analysis procedure complied by Abaqus code. The hydrogen diffusion coefficient in weld metal, the heat affected zone (HAZ), and the base metal of the 16MnR steel weldment were measured using the electrochemical permeation technique. The hydrogen diffusion without the effect of stress was also calculated and compared. Owing to the existence of welding residual stress, the hydrogen concentration was obviously increased and the hydrogen wouM diffuse and accumulate in the higher stress region.
文摘The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not hot cracking will occur. With rigid restraint hot cracking (crater cracking) will occur at the arc-stopping end, and such cracking usually will not occur without external restraint. But under restraint-free condition it is easy for terminal cracks to occur.
基金Project(2007DFR70070) supported by China-Russia Government-to-Government Scientific and Technical Cooperation Foundation
文摘The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite simulation method. The simulation results show that the weld seam undergoes strain hardening in the temperature range of 180-250 ℃, however, it exhibits strain softening at temperature above 250 ℃ during welding heating and cooling process. As a result, the strain hardening and strain softening effects counteract each other, introducing slightly influence on the welding residual stress, residual plastic strain and distortion. The welding longitudinal residual stress was determined by ultrasonic stress measurement method for the flat plates of A7N01-T4 aluminum alloy. The simulation results are well accordant with test ones.
基金Project was supported by the National Natural Science Foundation of China(Grant No.52165034)Science and Technology Programs of Inner Mongolia(Grant No.2020GG0301)+1 种基金Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No.2019MS05061)Scientific Research Projects of Higher Education of Inner Mongolia Autonomous Region Institutions(Grant No.NJZY20066).
文摘Due to local uneven heating during the welding process,the residual stress of the structure after welding affects the reliability of it.In order to ensure the reliability,it is of great significance to test the residual stress distribution of the welded joint.It has always been the focus to find a simple and feasible method for residual stress testing to quickly and accurately obtain the residual stress distribution of welded joints.The mechanical measurement method has high measurement accuracy,convenient and easy operation,but it will cause certain damage to the components.Physical measurement method can avoid damage to components,but its test cost is usually high,and its measurement accuracy can also be affected by the material microstructure characteristics of welded components.Based on the advantages and disadvantages of these two residual stress test methods,a modal test method is proposed.This method is a non-destructive measurement method.Based on the mathematical relationship between the residual stress of the welded structure and the natural frequency(mathematical model),the natural frequency is measured through the modal test to calculate the residual stress quickly.However,it is difficult to establish a mathematical model with this method,and it is not suitable for realization.
基金The work was supported by the Natural Science Foundation of Hebei Province of China under Grant No. E2006000528.
文摘In order to control welding stress and distortion, a new welding with trailing peening method based on the electromagnetic hammer was developed. This method uses the idea of constant frequency pulse width modulation for designing the control circuit of peening force and peening freqneney. The peening force can be adjusted between 0 and 1 000 N and the peening frequency ranges from 0 to 25 Hz. Peening force is applied to the weld metal and the weld toe during the welding by peening head. The experiments show that the method is portable and flexible, and it can adjust the distribution state of welding residual stress, making grain refinement. When the peening force is changed to 700 N and the peening frequency to 3 Hz, both the transverse and longitudinal residual stresses will drop obviously.
文摘The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used.
基金This work was supported by the National Natural Science Foundation of China (No. 50375005).
文摘With the resistance to stress corrosion of the base metal as a reference, the contrast result of stress corrosion cracking ( SCC) susceptibility of aluminum-copper alloy 2219 and 2014 welded joints under different welding processes ( VP-TIG welding, HF-TIG hybrid welding, laser-TIG hybrid welding and laser HF-TIG hybrid welding) is obtained via the slow strain rate testing ( SSRT) , scanning electron microscope ( SEM) and microstructure observation auxiliary technologies. Test results show that the joints of aluminum alloy 2219, welded by hybrid welding processes, have superior resistance to stress corrosion compared to those welded by the VP-TIG welding process in varying degrees, especially, the joint welded by the laser HF-TIG hybrid welding process, where the resistance to stress corrosion is almost the same as that of the base material. However, the HF or laser hybrid welding effect is not significant under the same welding conditions for welded joints of aluminum alloy 2014.
文摘The defect assessment in butt-welded joint of ASTM A36 steel plates and 7075-T7351 aluminum alloy plates containing transverse through thickness crack was analyzed using SINTAP procedure and FEA incorporating weld induced residual stresses. Weld induced longitudinal residual stress profile can be obtained through SINTAP procedure, FEA or experimental analysis. This residual stress profile can be fitted with the trapezoidal residual stress profile available in SINTAP. For three different cases, crack length and residual stress intensity factor (SIF) are calculated and its comparison with the results obtained through FEA is plotted with respect to crack length. The stress intensity factor for mechanical loading is also plotted in the same graph. Using this graphical plot, the total SIF, including residual stress and mechanical loading, can be calculated for any particular crack size. The total SIF can be compared with the fracture toughness of the material for damage tolerance analysis. Also a failure assessment diagram is drawn for welded 7075-T7351 aluminum alloy plates with different crack sizes for as-welded (only residual stress) and mechanical loading along with the existing weld induced residual stresses to show the safety level for a particular crack size and mechanical loading.
文摘A numerical analysis method was proposed to predict the welding residual stress in 2.25Cr-1Mo steel pipe considering solid-state phase transformations. A thermal elastic plastic finite element (FE) model considering effects of martensite transformation was developed based on commercial ABAQUS software. Continuous cooling transformation (CCT) diagrams were employed to simulate the fraction of martensite in fusion zone, coarse-grained heat affected zone and fine-grained heat affected zone. The Koistinen-Marburger relationship was used to trace the formation of martensite. The effects of both volume change and yield strength change due to phase transformation on welding residual stress were considered using the proposed FE model. The result shows that the phase transformation has significant effects on the welding residual stress in multi-pass butt weld of pipe. The predicted simulation results by the proposed numerical method are generally in good agreement with experimental results.
文摘To fit in with the strict geometrical integrity and ensure dimensionally consistent fabrication of the welded aerospace structures. the low stress no distortion(LSND)welding, a technique for thin materials, was poineered and developed to provide an ininprocess active control of welding distortion. Satisfactory distortion free results were achieved in both welding of jet engine cases of heat-resistance alloys and rocket fuel tanks of aluminuim alloys, and there need no. reworking operations for post-weld distortion correction. Based on the 'static' method a newly developed method for dvnamic in-process control is also discussed in this paper. Both methods provide quanutiative in-process control of incompatible strains in weld zone and low stress no distortion welding results.
文摘The fundamentals of acoustoelastic theory and the principle of acoustoelastic nondestructive stress analysis related ultrasonic test Instrument for weld residual stresses are described. The weld residual stress distribution in butt-welded joints was measured by the acoustoelastic stress analysis, which uses the pulse echo overlap method to measure the speed difference in ultrasonic shear waves polarized in principal directions, and a new method of evaluating the material anisotropy is proposed. The results indicate that the anisotropic coefficient of the welded metal is much greater than that of the parent metal. the longitudinal residual stress distributions measured by the acoustoelastic technique are coincident with those obtained by the theoretical analysis, and the measuring accuracy is much greater than that obtained by the resistance strain gauge.
基金National Natural Science Foundation of China (No. 50775053, 50675046)
文摘It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformation during multipass welding. In this study, a three dimension numerical model of a sixteen-pass double V-groove welded joint with 50 mm plate is developed to compute the stress field and deformation by using multiple CPU parallel processing technology. The following factors such as the non-linear of temperature, heat radiation, filling of material step by step and so on are considered. Distribution and evolution law of welding stress in the transverse and longitudinal section is analyzed in this paper, and the interpnss stresses are studied also. At the same time the evolution course of angular deformation amount is analyzed, and the experimental results show that the calculated resuhs accord with the measured results of angular deformation.
文摘To analyze the effects of width and thickness of each composition element of mixed steel U-rib-stiffened plates on the welding residual stress distribution, the distribution of the U-rib and the plate residual stress was calculated using a simplified calculation method. The method involved welding the mixed steel U-rib-stiffened plates for a structure with different sizes and different strength ratios of U-rib to plate. Based on a welding residual stress numerical simulation method validated by the blind hole method test, the distribution law of the mixed steel U-rib stiffened plate was studied. The results showed that the change of plate width has little impact on the welding residual stress and that the ratio of the thicknesses of the plate to U-rib stiffeners, the thickness of the plate, and the thickness of the U-rib has a great influence on the distribution of the welding residual stress. The thickness of plate and steel strength also greatly influenced the distribution width of the residual tensile stress. While analyzing the compression capacity of U-rib-stiffened plates, the simplified distribution of welding residual stress was used.
基金supported by the National Natural Science Foundation of China (no. 51478120)
文摘The blind-hole method is the most widely used approach to experimentally determine the distribution of residual stress. This paper aims to improve test accuracy of welding residual stress and conducts an experimental study on the strain release factors involved when using the blind-hole method for Q235 and Q345, two steels commonly used in building structures. The ranges of strain release factors A and B in the elastic stage, the effects of strain release factors on residual stress calculated values, and the plastic corrected strain release factors are analyzed considering of the effect of plastic deformation around the blind hole on measurement accuracy. Finally, a simplified calculation formula to determine strain release factors is proposed for use with the blind-hole method. Results show that in the elastic stage, strain release factor A for Q235 and Q345 ranges from-0.399 to-0.525 and strain release factor B from-0.791 to-0.960. Changing the strain release factors A and B shows that calculated residual tensile stress varies in relation to a decrease in both factor values. However, there is a increase in calculated residual compressive stress with a decrease in the strain release factor A value, but there is an decrease with a decrease in strain release factor B value. Calculated residual stress applied to elastic strain release factors is compared with that applied to amended plastic strain release factors for Q235 steel. The maximum deviation between calculated residual stress and test stress is reduced from 21.1 to 1.0%,and for Q345 steel from 26.5 to 1.2%. It is thus evident that the plastic correction formula proposed in this paper can be used in calculations when conducting a residual stress test.
文摘The feasibility of reducing the welding residual stress through local tensile loading is verified using the finite element method (FEM). The mechanism and effect of reducing stress during and after welding are compared. The results show that the effect of the former is better than that of the latter. Applying an external tension load of 200 MPa after welding, the maximum residual stress drops down from 235 MPa to about 90 MPa, moreover, it decreases to 30MPa when an external tension load of 200 MPa is applied during welding.
基金The authors acknowledge the financial support of the National Science and Technology Support Program of China (2009BAF44 BO0) and Research Fund for the Doctoral Program of Higher Education of China (20100201110065) and National Natural Science Foundation of China ( 51375370 ).
文摘The objective of this study is to investigate the influence of post weld heat treatment (PWHT) on the distribution of residual stress in welded pipes with large thickness. The detailed pass-by-pass finite element simulation was developed to study the residual stress in narrow gap multipass welding of pipes with a wall thickness of 150 mm and 89 weld beads. The effect of PWHT on welding residual stress was also investigated by means of numerical analysis. The simulated results show that the hoop stress is tensile stress in the weld region and compressive stress in the parent metal areas adjacent to weld seam. After heat treatment, the residual stresses decrease substantially, and the simulated residual stress is validated by the experimental one. The distribution of the through-wall axial residual stress along the weld center line is a self-equilibrating type.
文摘A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-designed test setup.Experiments are conducted on the fishbone shaped specimen under conventional welding and welding with various pre-stress values.The experimental results turn out that,the initiation rate of the weld hot cracks decreases with increasing values of the compressive pre-stress.When the pre-stress reaches 0.3-0.4 of the yield stress,the cracks even disappear.In mechanical viewpoint,the researches here develop a new way to control weld cracks.
文摘Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue disruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-welding-heating treatment (AWHT) and explosion treatment (ET) are presented. The results show that they are good ways to resisting SCC on the welded SS400 steel or other components.