Friction spot welding (FSpW) was successfully used to produce joints of LY12 aluminum alloy. The effects of refilling time on microstructure and mechanical properties of FSpW joints were systematically studied. Resu...Friction spot welding (FSpW) was successfully used to produce joints of LY12 aluminum alloy. The effects of refilling time on microstructure and mechanical properties of FSpW joints were systematically studied. Results show that the cross-section of FSpW joint presents a basin-like morphology. A white bonding ligament exists in the center of the joint. The stir zone can be clarified into sleeve affected zone and pin affected zone based on different grain sizes. With increasing the refilling time from 2. 0 s to 3.5 s, grains in the stir zone become coarser, microhardness of the joint decreases and tensile shear failure load of the joint firstly increases and then decreases. The maximum tensile shear failure load of 8 130 N is attained when the refilling time is 3.0 s. Shear-plug fracture mode and shear fracture mode can be observed in the tensile shear tests. The maximum hardness of 169. 7 HV is attained in the joint center when the refilling time is 2. 0 s.展开更多
In this paper the establishment and application of a time dependent measuring system for welding deformation are presented which is established with high quality sensors shielded from strong welding interference. By ...In this paper the establishment and application of a time dependent measuring system for welding deformation are presented which is established with high quality sensors shielded from strong welding interference. By using this system, vertical and horizontal displacements of the high temperature area are surveyed at the same time. And this system is also used for monitoring and controlling the deformation of real welded structures.展开更多
A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me...A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.展开更多
An effective approach is presented to extract welds from real-time radiographs, Firstly an algorithm based on an adaptive bidirectional threshold was proposed to segment the gradient image into ternary image, and then...An effective approach is presented to extract welds from real-time radiographs, Firstly an algorithm based on an adaptive bidirectional threshold was proposed to segment the gradient image into ternary image, and then the bidirectional accumulator Hough Transform was developed to extract weld edges from the ternary image. Different values of the coefficient proposed in the threshold algorithm were tested, and the proposed approach was applied to extract welds from real-time radiographic images of different types of welds with defects. Results show that the proposed method is adaptive and effective to extract welds from real-time radiographs of linear welds.展开更多
The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employ...The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.展开更多
The behavior of variable transparency glass is studied, and the response time analyzed and measured aimed at applications to welding goggles. Detection apparatus for goggle testing is involved in the design and develo...The behavior of variable transparency glass is studied, and the response time analyzed and measured aimed at applications to welding goggles. Detection apparatus for goggle testing is involved in the design and development. Charac-teristics of the apparatus are discussed based on experiments. The definition of nominal response time and effective response time are presented based on the analysis and calculation with experimental data.展开更多
Numerical analysis of keyhole shape and keyhole establishment time is of great significance for selection and optimization of the process parameters in keyhole plasma arc welding. In this paper, a three-dimensional tr...Numerical analysis of keyhole shape and keyhole establishment time is of great significance for selection and optimization of the process parameters in keyhole plasma arc welding. In this paper, a three-dimensional transient model is developed to analyze the evolutions of keyhole shape and keyhole establishment time in continuous current plasma arc welding process. Firstly, a combined volumetric heat source model is used to simulate the transient variation of temperature field. And then the surface deformation equation is adopted to calculate dynamic features of the keyhole shape and keyhole establishment time inside weld pool, in which the force action on weld pool surface is considered. Experiment is cond^ted to validate the numerical simulation results. The predicted keyhole size and keyhole establishment time are in agreement with the experimental measurement. And the calculated fusion zone geometry is consistent with the measured one.展开更多
A new real time control model based on the fundamental Petri net theory is built for a complete close loop welding robot system with time delay. The new Petri net model synchronizes with devices at the primary level b...A new real time control model based on the fundamental Petri net theory is built for a complete close loop welding robot system with time delay. The new Petri net model synchronizes with devices at the primary level by introducing into the basic Petri net expression new parameters which contain the responding real time information. In addition, time delay is taken into account by adding some necessary time related parameters. Usually, in a system without time delay, if the condition is enabled, the transition must be fired, but in a system with time delay, this property is only a necessary but not a sufficient condition.展开更多
It is of great significance to develop an intelligent monitoring system for weld penetration defects such as incomplete penetration and burn-through in real-time during robotic arc welding process. In this paper, robo...It is of great significance to develop an intelligent monitoring system for weld penetration defects such as incomplete penetration and burn-through in real-time during robotic arc welding process. In this paper, robotic gas metal arc welding experiments are carried out on the mild steel test pieces with Vee-type groove. Through-the-arc sensing method is used to capture the transient values of the welding voltage and current. The raw data of the captured welding current and voltage are processed statistically, and the feature vector SIO is extracted to correlate the welding conditions to the weld penetration information. It lays foundation for intelligent monitoring of weld quality in robotic arc welding.展开更多
Twin wire submerged arc welding (SAW) is widely used in oil or gas line pipe fabrication because of its high productivity. To investigate the strength and toughness of the heat-affected zone (HAZ) in twin wire SAW...Twin wire submerged arc welding (SAW) is widely used in oil or gas line pipe fabrication because of its high productivity. To investigate the strength and toughness of the heat-affected zone (HAZ) in twin wire SAW, the cooling time t8/5 of the coarse grained zone must be studied. The authors presented a method of predicting the cooling time in twin wire SAW of intermediate thickness plate. Based on Rosenthal analytical solutions, an energy factor was introduced to describe the energy contribution of the two wires, equations of thermal cycle and cooling time in twin wire SAW of both thick, and thin, plates were developed. Weighting factors determined by actual thickness and critical thickness were adopted to represent the thermal cycle and cooling time of intermediate thickness plate through linear interpolation with thick, and thin, plate solutions. The predicted cooling time for an intermediate thickness plate was verified experimentally, and the predicted results agreed therewith.展开更多
A digital arc welding power supply was designed with the advanced reduced instruction set computer machine (ARM) and embedded real-time multi-task operating system micro C/OS- Ⅱ. The ARM, with its powerful calculat...A digital arc welding power supply was designed with the advanced reduced instruction set computer machine (ARM) and embedded real-time multi-task operating system micro C/OS- Ⅱ. The ARM, with its powerful calculating speed and complete peripheral equipments, is very suitable to work as the controller of the digital power supply. The micro C/OS- Ⅱ transplanted in ARM, helps to improve the respondent speed against various welding signals, as well as the reliability of the controlling software. The welding process consists of nine tasks. The tasks of great significance on reliability of the welder, for example, the A/D conversion of current and voltage, enjoy top priority. To avoid simultaneous-sharing on A/D converter and LCD module, two semaphores are introduced in to ensure the smooth performance of the welding power supply. Proven by experiments ,the ARM and the micro C/OS- Ⅱ can greatly improve both the respondent speed and the reliability of the digital welder.展开更多
This paper expounds the necessity of applying real-time control in vision sensing and tracking system of welding robot and analyses the difficulty of welding image processing. Through experiments, a practical robot C...This paper expounds the necessity of applying real-time control in vision sensing and tracking system of welding robot and analyses the difficulty of welding image processing. Through experiments, a practical robot CO2 arc adaptive feedback tracking system is established. According to the analysing of current and voltage signals between welding torch and base metal, the image freezing time for TMS-32020 processor is determined, and the defect of dark image and serious splashes in CO, welding image are avoided. Thus welding image becomes clear, and digitalization of video signal is stability. Then, with adaptive threshold control the welding image binaryzation, 3×3 mean level filtration and 3×3 weighting mean level filtration in welding seam are processed.Furthermore, the deviation between the centre of welding torch and the seam welded is found out, even though there are much spatter in the welding image.At last, the end effector of the robot is controlled and a welding torch is carried to track the seam welded during arc welding.展开更多
Nonlinear methods are used to analyze current signal of spot welding and the minimum embedding dimension, correlation dimension, the optimal time delay and the largest Lyapunav exponent of current signal time series a...Nonlinear methods are used to analyze current signal of spot welding and the minimum embedding dimension, correlation dimension, the optimal time delay and the largest Lyapunav exponent of current signal time series are calculated in this paper. The chaotic character of current signal time series is discovered. Then a chaotic neural network is built and used to predict the future current signal. Means of residual error out of the network are used as eigenvalue of current signal during spot welding. It is shown that spatter can greatly affect the means of residual error of spot welding after analysis, the mean values of output errors of signal contaminated by spatter noise are more than 0. 08, but the mean values of output errors of the signal with no spatter noise are less than 0. 04, so mean of residual errors can be employed as the character of spatter.展开更多
Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controll...Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.展开更多
Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to ...Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.展开更多
Many research results have revealed that vaporization pressure has important effects on the formation of the keyhole and molten pool during laser welding. In this paper, based on law of conservation of energy, an inno...Many research results have revealed that vaporization pressure has important effects on the formation of the keyhole and molten pool during laser welding. In this paper, based on law of conservation of energy, an innovative physical model is found to calculate the vaporization pressure during laser welding. In this model, vaporization pressure can be calculated according to some characteristics of the spatter particle. These features include the size, velocity and displacement. They can be measured through images taken by high-speed camera. The periods of this pressure also measured by counting opening and closing time of the bottom keyholes. At this welding condition, the typical vaporization pressure is about 20 203 Pa and the period is about 6. 9 ms. The average opening time of bottom keyholes is about 4. 3 ms, and the closing time is about 2. 6 ms.展开更多
基金This work is supported by the National Natural Science Foundation of China (No. 51204111 ), the Natural Science Foundation of Liaoning Province ( No. 2013024004 and No. 2014024008).
文摘Friction spot welding (FSpW) was successfully used to produce joints of LY12 aluminum alloy. The effects of refilling time on microstructure and mechanical properties of FSpW joints were systematically studied. Results show that the cross-section of FSpW joint presents a basin-like morphology. A white bonding ligament exists in the center of the joint. The stir zone can be clarified into sleeve affected zone and pin affected zone based on different grain sizes. With increasing the refilling time from 2. 0 s to 3.5 s, grains in the stir zone become coarser, microhardness of the joint decreases and tensile shear failure load of the joint firstly increases and then decreases. The maximum tensile shear failure load of 8 130 N is attained when the refilling time is 3.0 s. Shear-plug fracture mode and shear fracture mode can be observed in the tensile shear tests. The maximum hardness of 169. 7 HV is attained in the joint center when the refilling time is 2. 0 s.
文摘In this paper the establishment and application of a time dependent measuring system for welding deformation are presented which is established with high quality sensors shielded from strong welding interference. By using this system, vertical and horizontal displacements of the high temperature area are surveyed at the same time. And this system is also used for monitoring and controlling the deformation of real welded structures.
文摘A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.
文摘An effective approach is presented to extract welds from real-time radiographs, Firstly an algorithm based on an adaptive bidirectional threshold was proposed to segment the gradient image into ternary image, and then the bidirectional accumulator Hough Transform was developed to extract weld edges from the ternary image. Different values of the coefficient proposed in the threshold algorithm were tested, and the proposed approach was applied to extract welds from real-time radiographic images of different types of welds with defects. Results show that the proposed method is adaptive and effective to extract welds from real-time radiographs of linear welds.
文摘The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.
基金the Science and Technology Commission of Shanghai Municipality (Grant No.052912015)
文摘The behavior of variable transparency glass is studied, and the response time analyzed and measured aimed at applications to welding goggles. Detection apparatus for goggle testing is involved in the design and development. Charac-teristics of the apparatus are discussed based on experiments. The definition of nominal response time and effective response time are presented based on the analysis and calculation with experimental data.
文摘Numerical analysis of keyhole shape and keyhole establishment time is of great significance for selection and optimization of the process parameters in keyhole plasma arc welding. In this paper, a three-dimensional transient model is developed to analyze the evolutions of keyhole shape and keyhole establishment time in continuous current plasma arc welding process. Firstly, a combined volumetric heat source model is used to simulate the transient variation of temperature field. And then the surface deformation equation is adopted to calculate dynamic features of the keyhole shape and keyhole establishment time inside weld pool, in which the force action on weld pool surface is considered. Experiment is cond^ted to validate the numerical simulation results. The predicted keyhole size and keyhole establishment time are in agreement with the experimental measurement. And the calculated fusion zone geometry is consistent with the measured one.
文摘A new real time control model based on the fundamental Petri net theory is built for a complete close loop welding robot system with time delay. The new Petri net model synchronizes with devices at the primary level by introducing into the basic Petri net expression new parameters which contain the responding real time information. In addition, time delay is taken into account by adding some necessary time related parameters. Usually, in a system without time delay, if the condition is enabled, the transition must be fired, but in a system with time delay, this property is only a necessary but not a sufficient condition.
文摘It is of great significance to develop an intelligent monitoring system for weld penetration defects such as incomplete penetration and burn-through in real-time during robotic arc welding process. In this paper, robotic gas metal arc welding experiments are carried out on the mild steel test pieces with Vee-type groove. Through-the-arc sensing method is used to capture the transient values of the welding voltage and current. The raw data of the captured welding current and voltage are processed statistically, and the feature vector SIO is extracted to correlate the welding conditions to the weld penetration information. It lays foundation for intelligent monitoring of weld quality in robotic arc welding.
文摘Twin wire submerged arc welding (SAW) is widely used in oil or gas line pipe fabrication because of its high productivity. To investigate the strength and toughness of the heat-affected zone (HAZ) in twin wire SAW, the cooling time t8/5 of the coarse grained zone must be studied. The authors presented a method of predicting the cooling time in twin wire SAW of intermediate thickness plate. Based on Rosenthal analytical solutions, an energy factor was introduced to describe the energy contribution of the two wires, equations of thermal cycle and cooling time in twin wire SAW of both thick, and thin, plates were developed. Weighting factors determined by actual thickness and critical thickness were adopted to represent the thermal cycle and cooling time of intermediate thickness plate through linear interpolation with thick, and thin, plate solutions. The predicted cooling time for an intermediate thickness plate was verified experimentally, and the predicted results agreed therewith.
基金Supported by the National Natural Science Foundation of China under Grant No 50575074by the Scientific and TechnologicalProject of Guangdong Province, China, under Grant No 2003A1040310
文摘A digital arc welding power supply was designed with the advanced reduced instruction set computer machine (ARM) and embedded real-time multi-task operating system micro C/OS- Ⅱ. The ARM, with its powerful calculating speed and complete peripheral equipments, is very suitable to work as the controller of the digital power supply. The micro C/OS- Ⅱ transplanted in ARM, helps to improve the respondent speed against various welding signals, as well as the reliability of the controlling software. The welding process consists of nine tasks. The tasks of great significance on reliability of the welder, for example, the A/D conversion of current and voltage, enjoy top priority. To avoid simultaneous-sharing on A/D converter and LCD module, two semaphores are introduced in to ensure the smooth performance of the welding power supply. Proven by experiments ,the ARM and the micro C/OS- Ⅱ can greatly improve both the respondent speed and the reliability of the digital welder.
文摘This paper expounds the necessity of applying real-time control in vision sensing and tracking system of welding robot and analyses the difficulty of welding image processing. Through experiments, a practical robot CO2 arc adaptive feedback tracking system is established. According to the analysing of current and voltage signals between welding torch and base metal, the image freezing time for TMS-32020 processor is determined, and the defect of dark image and serious splashes in CO, welding image are avoided. Thus welding image becomes clear, and digitalization of video signal is stability. Then, with adaptive threshold control the welding image binaryzation, 3×3 mean level filtration and 3×3 weighting mean level filtration in welding seam are processed.Furthermore, the deviation between the centre of welding torch and the seam welded is found out, even though there are much spatter in the welding image.At last, the end effector of the robot is controlled and a welding torch is carried to track the seam welded during arc welding.
基金National Natural Science Foundation of China(No50575159)project of Chinese Ministry of Education(No106049,20060056058)Natural Science Foundation of Tianjin (06YFJMJC03400)
文摘Nonlinear methods are used to analyze current signal of spot welding and the minimum embedding dimension, correlation dimension, the optimal time delay and the largest Lyapunav exponent of current signal time series are calculated in this paper. The chaotic character of current signal time series is discovered. Then a chaotic neural network is built and used to predict the future current signal. Means of residual error out of the network are used as eigenvalue of current signal during spot welding. It is shown that spatter can greatly affect the means of residual error of spot welding after analysis, the mean values of output errors of signal contaminated by spatter noise are more than 0. 08, but the mean values of output errors of the signal with no spatter noise are less than 0. 04, so mean of residual errors can be employed as the character of spatter.
文摘Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.
文摘Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.
文摘Many research results have revealed that vaporization pressure has important effects on the formation of the keyhole and molten pool during laser welding. In this paper, based on law of conservation of energy, an innovative physical model is found to calculate the vaporization pressure during laser welding. In this model, vaporization pressure can be calculated according to some characteristics of the spatter particle. These features include the size, velocity and displacement. They can be measured through images taken by high-speed camera. The periods of this pressure also measured by counting opening and closing time of the bottom keyholes. At this welding condition, the typical vaporization pressure is about 20 203 Pa and the period is about 6. 9 ms. The average opening time of bottom keyholes is about 4. 3 ms, and the closing time is about 2. 6 ms.