期刊文献+
共找到2,750篇文章
< 1 2 138 >
每页显示 20 50 100
Bulging Distortion of Austenitic Stainless Steel Sheet on the Partially Penetrated Side of Non-Penetration Lap Laser Welding Joint
1
作者 Chengwu Yao Enze Liu +1 位作者 Jiaming Ni Binying Nie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期286-295,共10页
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust... Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding. 展开更多
关键词 Non-penetration lap laser welding Bulging distortion Austenitic stainless steel Compressive stress Tension stress
下载PDF
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding
2
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
下载PDF
Welding Effect at the Heat Affected Zone by Joining a Gray Cast Iron with Stainless Steel E308-16
3
作者 Yajaira Curiel-Razo Enrique Curiel-Reyna +2 位作者 Minerva Robles-Agudo Alberto Lara-Guevara Ignacio Rojas-Rodríguez 《Materials Sciences and Applications》 2023年第6期336-345,共10页
Different investigations of the union of dissimilar materials such as stainless steel and different castings have been carried out, but rapid cooling immediately after welding has not been considered, in this work it ... Different investigations of the union of dissimilar materials such as stainless steel and different castings have been carried out, but rapid cooling immediately after welding has not been considered, in this work it was investigated how rapid cooling affects the metallurgical microstructure and consequently the mechanical properties. The effect of welding parameters on the microstructure and mechanical properties of the joint between dissimilar metals, an E-308-16 austenitic stainless steel and Gray Cast Iron was also analyzed. Gray cast iron samples (GCI) were fabricated, welded and cooled. The main welding parameters studied in this work are the welding technique and the type of filler electrodes. Flux-coated electrode E-308-16 was applied for this different joint. An experimental study was carried out for the analysis of welded joints of similar and dissimilar steels. The microstructure of the welded joints was analyzed using an optical microscope, in the base metals, heat affected zone (HAZ) and filler metal. The mechanical properties of the welded joints were evaluated by Vickers microhardness and tensile strength tests. The hardness profile showed differences in hardness between the base metals, the heat affected zone and the filler metal. The metallurgical microstructures observed along the welded areas corresponded to the profile. The hardness differences determined the effect on the mechanical and metallurgical characteristics of the welded samples as a result of the cooling rate differences. This research work is important because it allows us to analyze the possibility of reworking pieces of dissimilar materials by welding or, failing that, to determine if this may or may not be possible. 展开更多
关键词 Gray Iron welding Hot Affected Zone Filler Metal Microstructure Dissimilar Metals
下载PDF
Atomically bonding Na anodes with metallized ceramic electrolytes by ultrasound welding for high-energy/power solid-state sodium metal batteries 被引量:2
4
作者 Dongchen Li Xinxin Wang +7 位作者 Qi Guo Xiaole Yu Shangxu Cen Huirong Ma Jingjing Chen Dajian Wang Zhiyong Mao Chenlong Dong 《Carbon Energy》 SCIE CSCD 2023年第2期184-192,共9页
A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resis... A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries. 展开更多
关键词 intimate interface contact metallized ceramics Na-Au interlayer solid-state sodium metal battery ultrasound welding
下载PDF
A review of linear friction welding of Ni -based superalloys 被引量:2
5
作者 Xiawei Yang Tingxi Meng +6 位作者 Qiang Chu Yu Su Zhenguo Guo Rui Xu Wenlong Fan Tiejun Ma Wenya Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1382-1391,共10页
Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,... Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,fatigue resistance,and high-temperature strength.Linear friction welding(LFW)is a new joining technology with near-net-forming characteristics that can be used for the manu-facture and repair of a wide range of aerospace components.This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation,microstructures,mechanical proper-ties,flash morphology,residual stresses,creep,and fatigue of Ni-based superalloy weldments produced with LFW to enable future optim-um utilization of the LFW process. 展开更多
关键词 Ni-based superalloys linear friction welding MICROSTRUCTURES mechanical properties flash morphology
下载PDF
Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys 被引量:1
6
作者 Zongli Yi Jiguo Shan +2 位作者 Yue Zhao Zhenlin Zhang Aiping Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1072-1088,共17页
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ... Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary. 展开更多
关键词 nickel-based superalloy fusion welding liquation cracking cracking mechanism cracking suppression
下载PDF
Galvanic corrosion of AZ31B joined to dual-phase steel with and without Zn layer by ultrasonic and friction stir welding
7
作者 Jiheon Jun Vineet V.Joshi +6 位作者 Alasdair Crawford Vilayanur Viswanathan Donovan N.Leonard Jian Chen Piyush Updadhyay Yong Chae Lim Zhili Feng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期462-479,共18页
Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. C... Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. Corrosion volume and depth from Mg anode surfaces exposed to 0.1 M sodium chloride solution was analyzed as functions of cathode surface type and welding method. Characterization of as-welded joints was performed to identify any microstructural feature of the bonding zone that could impact galvanic corrosion behavior.COMSOL modeling with modified user subroutine was conducted to simulate the progression of Mg corrosion in the same joint and electrode configurations used for the corrosion experiments. The experimental results indicated that Zn-coated cathode surface can reduce Mg galvanic corrosion significantly as galvanic polarization and cathodic current on Zn-coated surface remained relatively low for Mg in the weld joints.COMSOL modeling described the growth of Mg galvanic corrosion in a reasonable manner but showed limitation by underestimating the corrosion volume as it did not capture self-corrosion. 展开更多
关键词 Mg alloy Zn coating Ultrasonic spot welding Friction stir welding Galvanic corrosion
下载PDF
Microstructure and toughness of thick-gauge pipeline steel joint via double-sided friction stir welding combined with preheating
8
作者 Guangming Xie Ruihai Duan +2 位作者 Yuqian Wang Zong’an Luo Guodong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期724-733,共10页
Fusion welding easily causes microstructural coarsening in the heat-affected zone(HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ(ICCGHAZ), which conside... Fusion welding easily causes microstructural coarsening in the heat-affected zone(HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ(ICCGHAZ), which considerably deteriorates the toughness of the joint. In the present work, 11-mm thick pipeline steel was joined by preheating and double-sided friction stir welding(FSW). A comparative study on the microstructure and toughness in the ICCGHAZs for FSW and gas metal arc welding(GMAW) was performed. The toughness in the ICCGHAZ for FSW was improved significantly than that in the ICCGHAZ for GMAW. Generally, the nugget zone(NZ) has a coarse microstructure in the FSW steel joint formed at the highest peak temperature. However, in the current study, the microstructure in the one-pass NZ was remarkably refined owing to the static recrystallization of ferrite. An excellent toughness was achieved in the NZ of the pipeline steel joint that employed FSW. 展开更多
关键词 pipeline steel thick-gauge plate friction stir welding microstructure TOUGHNESS
下载PDF
Repairing of exit-hole in friction-stir-spot welded joints for 2024-T4 aluminum alloy by resistance welding
9
作者 Lipeng Deng Pengliang Niu +2 位作者 Liming Ke Jinhe Liu Jidong Kang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期660-669,共10页
The exit-hole in friction stir spot welded(FSSWed) 2024-T4 aluminum alloy joints was successfully repaired by using a three-phase secondary rectification resistance spot welding machine, which is termed as filling exi... The exit-hole in friction stir spot welded(FSSWed) 2024-T4 aluminum alloy joints was successfully repaired by using a three-phase secondary rectification resistance spot welding machine, which is termed as filling exit-hole based on resistance welding(FEBRW). The filling dynamic behavior of force was recorded by a device monitoring. Optical microscope(OM), electron backscatter diffraction(EBSD), and tensile shear tests and finite element modelling were conducted to investigate the repairing stages and bonding mechanisms of the repaired joints in detail. Results showed that exit-hole was completely filled and repaired experiencing three stages. Metallurgical bonding was achieved between plug and exit-hole wall in two forms, including melting bonding in the middle of the joints and partial diffusion bonding on both the upper and bottom of the joints. The highest tensile shear strength of the repaired joints was 7.43 kN, which was 36.3% higher than that of the as welded joints. Resistance welding paves an efficient way to repair the exit-hole in FSSWed joints. 展开更多
关键词 resistance welding exit-hole repairing bonding mechanisms
下载PDF
Friction welding of TiAl intermetallics and structural steel by applying Inconel 718 as interlayer 被引量:1
10
作者 李京龙 王忠平 +2 位作者 熊江涛 张赋升 王艳芳 《China Welding》 EI CAS 2005年第2期85-89,共5页
Inconel 718 with thickness ranged from 0. 1 - 1.7 mm was chosen as interlayer to promote weldability in friction welding of TiAl intermetallics and structural steel such as AIS14140, in which the welded joint presents... Inconel 718 with thickness ranged from 0. 1 - 1.7 mm was chosen as interlayer to promote weldability in friction welding of TiAl intermetallics and structural steel such as AIS14140, in which the welded joint presents single fin showing less welding deformation on TiAl side. The correlations between tensile strength and the interlayer thickness were analyzed and fitted to a model. It indicates an optimum interlayer thickness ranged from 0.9 - 1.1 mm where the tensile strength reaches as high as 360 MPa. Otherwise, while the interlayer thickness decreases to 0. 1 mm, brittle compounds of TiC, Al2Ti4C2 and MTC3 are formed in the welded zone so that the tensile strength decays. Thicker interlayer should be also avoided as double joints may occur at TiAl -lnconel 718 and lnconel 718 -AISI 4140, respectively, which lowers the tensile strength to some extent. 展开更多
关键词 friction welding INTERMETALLICS TIAI INTERLAYER Inconel 718 AISI 4140
下载PDF
FEM Simulation of Distortion and Residual Stress Generated by High Energy Beam Welding with Considering Phase Transformation 被引量:1
11
作者 Y.-C. Kim M. Hirohata K. Inose 《Open Journal of Metal》 2014年第2期31-39,共9页
A series of experiments was carried out so as to elucidate the effect of the phase transformation in the cooling process on welding distortion and residual stress generated by laser beam welding (LBW) and laser-arc hy... A series of experiments was carried out so as to elucidate the effect of the phase transformation in the cooling process on welding distortion and residual stress generated by laser beam welding (LBW) and laser-arc hybrid welding (HYBW) on the high strength steel (HT780). Then, the experiments were simulated by 3D thermal elasticplastic analysis with FEM (Finite Element Method) which was performed with using the idealized mechanical properties considering the transformation superplasticity. From the results, the effects of the phase transformation on welding distortion and residual stress generated by LBW and HYBW were elucidated. Furthermore, the generality of the idealization of the mechanical properties was verified. 展开更多
关键词 welding DISTORTION Residual Stress LASER BEAM welding Laser-Arc Hybrid welding Phase Transformation FEM
下载PDF
A critical review on solid-state welding of high entropy alloys-processing,microstructural characteristics and mechanical properties of joints
12
作者 Tushar Sonar Mikhail Ivanov +2 位作者 Evgeny Trofimov Aleksandr Tingaev Ilsiya Suleymanova 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期78-133,共56页
The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistan... The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistance,high temperature strength and corrosion resistance.These alloys are manufactured by the equal mixing or larger proportions of five or more alloying elements.HEAs exhibit superior mechanical performance compared to traditional engineering alloys because of the extensive alloying composition and higher entropy of mixing.Solid state welding(SSW)techniques such as friction stir welding(FSW),rotary friction welding(RFW),diffusion bonding(DB)and explosive welding(EW)have been efficiently deployed for improving the microstructural integrity and mechanical properties of welded HEA joints.The HEA interlayers revealed greater potential in supressing the formation of deleterious intermetallic phases and maximizing the mechanical properties of HEAs joints.The similar and dissimilar joining of HEAs has been manifested to be viable for HEA systems which further expands their industrial applications.Thus,the main objective of this review paper is to present a critical review of current state of research,challenges and opportunities and main directions in SSW of HEAs mainly CoCrFeNiMn and Al_xCoCrFeNi alloys.The state of the art of problems,progress and future outlook in SSW of HEAs are critically reviewed by considering the formation of phases,microstructural evolution and mechanical properties of HEAs joints. 展开更多
关键词 High entropy alloys Solid state welding MICROSTRUCTURE Mechanical properties
下载PDF
Theoretical analysis of the elastic Kelvin-Helmholtz instability in explosive weldings
13
作者 Yuanbo Sun Jianning Gou +5 位作者 Cheng Wang Qiang Zhou Rui Liu Pengwan Chen Tonghui Yang Xiang Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期521-528,共8页
By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the el... By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations. 展开更多
关键词 Explosive welding Hydrodynamic instabilities ELASTICITY
下载PDF
Numerical Simulation of the Parallel Gap Resistance Welding Process of a Solar Cell and Mo/Pt/Ag Interconnector
14
作者 Xingyu Chen Kai Wang +4 位作者 Zhicheng Wu Bin Su Xinyu Cui Yuan Huang Zumin Wang 《Transactions of Tianjin University》 EI CAS 2024年第5期419-427,共9页
Energy for space vehicles in low Earth orbit(LEO) is mainly generated by solar arrays, and the service time of the vehicles is controlled by the lifetime of these arrays, which depends mainly on the lifetime of the in... Energy for space vehicles in low Earth orbit(LEO) is mainly generated by solar arrays, and the service time of the vehicles is controlled by the lifetime of these arrays, which depends mainly on the lifetime of the interconnects. To increase the service life of LEO satellites, molybdenum/platinum/silver(Mo/Pt/Ag) laminated metal matrix composite(LMMC) interconnectors are widely used in place of Mo/Ag LMMC and Ag interconnectors in solar arrays. A 2D thermal-electrical-mechanical coupled axisymmetric model was established to simulate the behavior of the parallel gap resistance welding(PGRW) process for solar cells and Mo/Pt/Ag composite interconnectors using the commercial software ANSYS. The direct multicoupled PLANE223 element and the contact pair elements TARGE169 and CONTA172 were employed. A transitional meshing method was applied to solve the meshing problem due to the ultrathin(1 μm) intermediate Pt layer. A comparison of the analysis results with the experimental results revealed that the best parameters were 60 W, 60 ms, and 0.0138 MPa. The voltage and current predicted by the finite element method agreed well with the experimental results. This study contributes to a further understanding of the mechanism of PGRW and provides guidance for finite element simulation of the process of welding with an ultrathin interlayer. 展开更多
关键词 Solar arrays Parallel gap resistance welding Finite element method Heat transfer coefficient Ultrathin intermediate Pt layer
下载PDF
MD Simulation of Diffusion Behaviors in Collision Welding Processes of Al-Cu, Al-Al, Cu-Cu
15
作者 Dingyi Jin Guo Wei 《Computers, Materials & Continua》 SCIE EI 2024年第6期3455-3468,共14页
To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,... To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,Al-Al and Cu-Cu combinations fabricated through collision welding using molecular dynamic(MD)simulation.The atomic diffusion behaviors are compared between similar metal combinations(Al-Al,Cu-Cu)and dissimilar metal combinations(Al-Cu).By combining the simulation results and classical diffusion theory,the diffusion coefficients for similar and dissimilar metal material combinations under different velocity conditions are obtained.The effects of material combinations and collision velocity on diffusion behaviors are also discussed.The diffusion behaviors of dissimilar material combinations strongly depend on the transverse velocity,whereas those of the similar material combinations are more dependent on the longitudinal velocity.These findings can provide guidance for optimizing welding parameters. 展开更多
关键词 Atomic diffusion behavior molecular dynamics collision welding
下载PDF
Design of Fully Automatic Specification Selection System for Resistance Welding Equipment
16
作者 Xiangkun Lu Zengtai Tian +1 位作者 Hao Xu Yue Guo 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期64-68,共5页
A system for fully automatic selection of welding specifications in resistance welding equipment has been developed to address the problem of workers frequently choosing the wrong specifications during manual welding ... A system for fully automatic selection of welding specifications in resistance welding equipment has been developed to address the problem of workers frequently choosing the wrong specifications during manual welding of multiple parts on a single machine in automobile factories. The system incorporates an automatic recognition system for different workpiece materials using the added machine fixture,visual detection system for nuts and bolts,and secondary graphical confirmation to ensure the correctness of specification calling. This system achieves reliable,fully automatic selection of welding specifications in resistance welding equipment and has shown significant effects in improving welding quality for massproduced workpieces,while solving the problem of specification calling errors that can occur with traditional methods involving process charts and code adjustments. This system is particularly suitable for promoting applications in manual welding of multiple parts on a single machine in automobile factories,ensuring correct specification calling and welding quality. 展开更多
关键词 seat spot welding welding specifications fully automatic
下载PDF
Influence of heat input on microhardness and microstructure across the welding interface between stainless steel and low alloy steel
17
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第1期14-21,共8页
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl... The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects. 展开更多
关键词 welding interface transition layer heat input MICROSTRUCTURE hardness
下载PDF
Effect of V content on microstructures and properties of TiC cermet fusion welding interface
18
作者 魏炜 徐莹 +2 位作者 王旭 黄智泉 刘胜新 《China Welding》 CAS 2024年第1期40-45,共6页
The effects of vanadium(V)on the microstructures and mechanical properties of the TiC cermet fusion welding interface were studied by adjusting the content of V in the self-developed flux-cored wires using metal inert... The effects of vanadium(V)on the microstructures and mechanical properties of the TiC cermet fusion welding interface were studied by adjusting the content of V in the self-developed flux-cored wires using metal inert gas arc(MIG)welding for surfacing on the TiC cermet.The results show that the increase in V content promotes the element diffusion between TiC cermet and weld metal.There are no de-fects observed in the interface,and the diffusion of elements refers to excellent metallurgical bonding.The shear strength of the fusion zone initially decreases and then increases with the increase in V content.The maximum shear strength of the TiC cermet/weld interface,reaching 552 MPa,occurred when the V content reached 0.65%.Meanwhile,the average hardness in the transition zone reached 488.2 HV0.2. 展开更多
关键词 TiC cermet MIG welding INTERFACE V content shear strength
下载PDF
Influence of heat input on the microhardness and microstructure of the welding interface between nickel-based alloy and low-alloy steel
19
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第3期33-38,共6页
The evolution of microstructure and local properties near the welding interface is essential for the service safety of dissimilar metal welded joints between nickel-based alloy(NA) and low-alloy steel(LA).In this work... The evolution of microstructure and local properties near the welding interface is essential for the service safety of dissimilar metal welded joints between nickel-based alloy(NA) and low-alloy steel(LA).In this work,NA filler metal was deposited on LA substrate under different heat inputs by tungsten inert gas(TIG) welding.Microstructural characterization and microhardness tests were carried out near the prepared cladding interfaces.Optical and scanning electron microscopes show the lack of evident hardening transition layer along the welding interface.As the heat input increases,the mean hardness of the deposited layer also increases remarkably due to the rising dilution rate.Microstructural characterization shows a significant composition gradient across the cladding interface,but the diffusion gradient is limited to a small range.Under high heat input,a planar grain zone is generated along the interface due to the large temperature gradient across the interface region. 展开更多
关键词 welding interface heat input MICROSTRUCTURE MICROHARDNESS
下载PDF
Microstructure and mechanical properties of stationary shoulder friction stir welding joint of 2A14-T62 aluminum alloy
20
作者 邓建峰 王博 +3 位作者 王生希 郭伟强 黄智恒 费文潘 《China Welding》 CAS 2024年第2期31-38,共8页
2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed... 2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed of 2000 r/min and welding speed of 30 mm/min,joint with smooth surface,small reduction in thickness and little inner defects was obtained.The weld nugget zone was approx-imately circular,which was a unique morphology for SSFSW.The heat-affected zone(HAZ)and thermo-mechanically affected zone(TMAZ)were both quite narrow due to the lower heat input and slight mechanical action of the stationary shoulder.The fraction of high angle grain boundaries(HAGBs)exhibited a“W”shape along horizontal direction(from advancing side to retreating side),and the minim-um value located at HAZ.The average ultimate tensile strength and elongation of the joint were 325 MPa and 4.5%,respectively,with the joint efficiency of 68.3%.The joint was ductile fractured and the fracture surface contained two types of dimples morphology in different re-gions of the joint.Microhardness distribution in the joint exhibited a“W”shape,and the difference along the thickness direction was negli-gible.The joint had strong stress corrosion cracking susceptibility,and the slow stain rate tensile strength was 139 MPa.Microcrack and Al2O3 particulates were observed at the fracture surface. 展开更多
关键词 2A14-T62 aluminum alloy stationary shoulder friction stir welding microstructure mechanical property stress corrosion cracking
下载PDF
上一页 1 2 138 下一页 到第
使用帮助 返回顶部