期刊文献+
共找到731篇文章
< 1 2 37 >
每页显示 20 50 100
EFFECT OF Zr ADDITION TO Ti-KILLED STEEL ON INCLUSION FORMATION AND MICROSTRUCTURAL EVOLUTION IN WELDING INDUCED COARSE-GRAINED HEAT AFFECTED ZONE 被引量:18
1
作者 F. Chai C.F. Yang +3 位作者 H. Su Y.Q. Zhang Z. Xu Y.H. Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第3期220-226,共7页
Effects of Zirconium on the chemical component and size distribution of Ti-bearing inclusions, favored the grain refinement of the welding reduced, coarse-grained heat affected zone (CGHAZ) with enhanced impact toug... Effects of Zirconium on the chemical component and size distribution of Ti-bearing inclusions, favored the grain refinement of the welding reduced, coarse-grained heat affected zone (CGHAZ) with enhanced impact toughness in Ti-killed steels, which were examined based on experimental observations and thermodynamic calculations. It indicated that the chemical constituents of inclusions gradually varied from the TiO oxide to the Ti-O+Zr-O compound oxide and a single phase of the ZrO2 oxide, as the Zr content increased from zero to 0.0100%. A trace of Zr (0.0030%-0.0080%, depending on the oxygen content in liquid steel) provided a large amount of nucleating core for Ti oxide because of the larger specific density of ZrO2 oxide, and produced a small size distribution of the inclusions favorable for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ, with enhanced impact toughness. Otherwise, a high content of Zr (-0.0100%) produced a single phase Zr02, which was impotent to nucleate acicular ferrite, and a microstructure composed of ferrite side plate and grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations. 展开更多
关键词 Nonmetallic inclusions ZIRCONIUM Acicular ferrite coarse-grain heat affected zone (CGHAZ)
下载PDF
Influence of the secondary welding thermal cycle on the microstructure and property of coarse grain heat-affected zone in an X100 pipeline steel
2
作者 张骁勇 高惠临 +1 位作者 吉玲康 庄传晶 《China Welding》 EI CAS 2010年第3期25-30,共6页
The influence of the secondary thermal cycle on the microstructure of coarse grain heat-affected zone in an XIO0 pipeline steel was investigated by means of a thermal simulation technique and microscopic analysis meth... The influence of the secondary thermal cycle on the microstructure of coarse grain heat-affected zone in an XIO0 pipeline steel was investigated by means of a thermal simulation technique and microscopic analysis method. The property of coarse grain heat-affected zone was characterized by Charpy V-Notch impact properties testing. The results indicated that the experimental steel exhibited local brittleness of intercritically reheated coarse-grained heat-affected zone when the peak tempera- ture of secondary thermal cycle was in the range of two phases region ( ~ and 3/). There were two main reasons for the local brittleness. The first was that the microstructures of intercritically reheated coarse-grained heat-affected zone were not fined although partial grain recrystallization occurred. The second was that M-A islands, which had the higher content, larger size and higher hardness, existed in intercritically reheated coarse-grained heat-affected zone. 展开更多
关键词 X100 pipeline steel secondary thermal cycle MICROSTRUCTURE coarse grain heat-affected zone
下载PDF
Effect of Zr-Ti combined deoxidation on impact toughness of coarse-grained heat-affected zone with high heat input welding
3
作者 万响亮 吴开明 +2 位作者 王红鸿 卢伟煜 成林 《China Welding》 EI CAS 2014年第4期56-62,共7页
In this study, the effects of Zr-Ti combined deoxidation and AI deoxidation on the impact toughness of coarse- grained heat-affected zone in high-strength low-alloy steels were investigated. More fine oxides were form... In this study, the effects of Zr-Ti combined deoxidation and AI deoxidation on the impact toughness of coarse- grained heat-affected zone in high-strength low-alloy steels were investigated. More fine oxides were formed in the Zr-Ti-killed steel than in Al-killed steel. It was also found that more acicular ferrite grains were formed in the coarse-grained heat-affected zone in the Zr-Ti-killed steel than in Al-killed steel. The impact toughness of coarse-grained heat-affected zone of Zr-Ti-kiUed steel was higher than that of Al-killed steel. The good impact toughness was attributable to the pinning effect of fine oxides and the formation of acicular ferrite grains on fine oxides. 展开更多
关键词 STEELS heat-affected zone high heat input welding TOUGHNESS DEOXIDATION
下载PDF
In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels 被引量:13
4
作者 Xiang-liang Wan Kai-ming Wu +2 位作者 Gang Huang Ran Wei Lin Cheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第9期878-885,共8页
The austenite grain growth behavior in a simulated coarse-grained heat-affected zone during thermal cycling was investigated via in situ observation. Austenite grains nucleated at ferrite grain boundaries and then gre... The austenite grain growth behavior in a simulated coarse-grained heat-affected zone during thermal cycling was investigated via in situ observation. Austenite grains nucleated at ferrite grain boundaries and then grew in different directions through movement of grain boundaries into the ferrite phase. Subsequently, the adjacent austenite grains impinged against each other during the α→γtransformation. After the α→γ transformation, austenite grains coarsened via the coalescence of small grains and via boundary migration between grains. The growth process of austenite grains was a continuous process during heating, isothermal holding, and cooling in simulated thermal cycling. Abundant finely dispersed nanoscale TiN particles in a steel specimen containing 0.012wt% Ti effectively retarded the grain boundary migration, which resulted in refined austenite grains. When the Ti concentration in the steel was increased, the number of TiN particles de- creased and their size coarsened. The big particles were not effective in pinning the austenite grain boundary movement and resulted in coarse austenite grains. 展开更多
关键词 alloy steel AUSTENITE grain growth heat-affected zone coarseNING titanium nitride
下载PDF
Effect of welding parameters on the heat-affected zone of AISI409 ferritic stainless steel 被引量:6
5
作者 Eslam Ranjbarnodeh Stefanie Hanke +1 位作者 Sabine Weiss Alfons Fischer 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第10期923-929,共7页
One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ) In the present study, the microstmctural characteristics of tungsten inert gas (TI... One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ) In the present study, the microstmctural characteristics of tungsten inert gas (TIG) welded AISI409 ferritic stainless steel were investigated by electron backscattered diffraction (EBSD), and the effects of welding parameters on the grain size, local misorientation, and low-angle grain boundaries were studied. A 3-D finite element model (FEM) was developed to predict the effects of welding parameters on the holding time of the HAZ above the critical temperature of grain growth. It is found that the base metal is not fully recrystallized. During the welding, complete recrystallization is followed by severe grain growth. A decrease in the number of low-angle grain boundaries is observed within the HAZ. FEM results show that the final state of residual sWains is caused by competition between welding plastic strains and their release by recrystallization. Still, the decisive factor for grain growth is heat input. 展开更多
关键词 ferritic stainless steel welding heat affected zone RECRYSTALLIZATION grain growth finite element method
下载PDF
Quantitative research on the heat affected zone of weave bead welding for Invar alloy 被引量:2
6
作者 陈洁 占小红 +3 位作者 夏令 张聃 刘芸 魏艳红 《China Welding》 EI CAS 2017年第2期18-22,共5页
Quantitative research on the heat affected zone ( HAZ) o f weave bead welding ( WBW) joint fo r Invar alloy is carried out in this paper. Based on the morphology and related data analysis of the weld se... Quantitative research on the heat affected zone ( HAZ) o f weave bead welding ( WBW) joint fo r Invar alloy is carried out in this paper. Based on the morphology and related data analysis of the weld seam, the width difference o f each layer and the forming mechanism are analyzed. Results show that the bottom layer ( Layer 1 ) has the widest HAZ and the smallest fluctuation, which reaches 1 200 |jLm. HAZ width o f layer 2 to 5 is relatively narrower which is basically below 600 jjim, while the amplitude fluctuation is greater. The main reason lies in the welding path. The long straight welding without weave causes the base metal near the groove fully melts which causes by the long straight welding without weave, while welding with weave leads to the uneven and inadequate melting of metal near groove. 展开更多
关键词 heat affected zone weave bead welding Invar alloy
下载PDF
MICROSTRUCTURE TRANSFORMATION IN THE WELDING HEAT AFFECTED ZONE OF 800MPa GRADE ULTRA FINE STRUCTURED STEEL 被引量:1
7
作者 J.B. Liu L.J. Hu +3 位作者 Y.T.Wang Z. Q. Liu K. Miao Z.L. Tian 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第3期238-246,共9页
The transformation behavior and microstructure development in the heat affected zone(HAZ)of 800MPa grade ultra fine structured steel was investigated.It was found that the HAZ has intermediate temperature transformati... The transformation behavior and microstructure development in the heat affected zone(HAZ)of 800MPa grade ultra fine structured steel was investigated.It was found that the HAZ has intermediate temperature transformation characteristics in a wide range of cooling rates,with the bainite sheaves consisting of bainite ferrite plates without carbide precipitation and retained austenite in the fast cooling regime.At relatively high cooling rates,which corresponded to low heat inputs,the hardness of the simulated HAZ was above that of the base metal.When the cooling rate was below 9C/s,the welding HAZ would have an obvious softening.The analysis of transformation rates in continuous cooling processes was completed by numerical differential method.The result indicated that the microstructure transformation rate of the HAZ in 800MPa grade ultra fine structured steel changed sharply to slow speeds when the cooling time t8/5 is longer than 7s. 展开更多
关键词 ultra fine structured steel WELD heat affected zone transformation rate microstructure
下载PDF
Microstructure and embrittlement of the fine-grained heat-affected zone of ASTM4130 steel 被引量:2
8
作者 Li-ying Li Yong Wang Tao Han Chao-wen Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第4期419-423,共5页
The mechanical properties and microstructure features of the fine-grained heat-affected zone(FGHAZ) of ASTM4130 steel was investigated by optical microscope(OM),scanning electron microscope(SEM),transmission ele... The mechanical properties and microstructure features of the fine-grained heat-affected zone(FGHAZ) of ASTM4130 steel was investigated by optical microscope(OM),scanning electron microscope(SEM),transmission electron microscope(TEM),and welding thermal simulation test.It is found that serious embrittlement occurs in the FGHAZ with an 81.37% decrease of toughness,compared with that of the base metal.Microstructure analysis reveals that the FGHAZ is mainly composed of acicular,equiaxed ferrite,granular ferrite,martensite,and martensite-austenite(M-A) constituent.The FGHAZ embrittlement is mainly induced by granular ferrite because of carbides located at its boundaries and sub-boundaries.Meanwhile,the existence of martensite and M-A constituent,which distribute in a discontinuous network,is also detrimental to the mechanical properties. 展开更多
关键词 ASTM4130 steel welding heat-affected zone MICROSTRUCTURE EMBRITTLEMENT
下载PDF
High-temperature creep properties of fine grained heat-affected zone in P92 weldment
9
作者 王学 史专 +1 位作者 潘乾刚 吴洪亮 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期772-775,共4页
The simulated fine grained heat-affected zone (FGHAZ) specimens for P92 welded joints were prepared by heat treatment, then the creep tests were carried out at 650 ℃ under the applied stress of 90-120 MPa to investig... The simulated fine grained heat-affected zone (FGHAZ) specimens for P92 welded joints were prepared by heat treatment, then the creep tests were carried out at 650 ℃ under the applied stress of 90-120 MPa to investigate high-temperature creep behavior of FGHAZ. The results show that the creep property of FGHAZ is much inferior to that of the base metal, which exhibits the much higher steady creep rate and shorter time to creep fracture. The power law equation can describe the steady creep rate dependence on applied stress, indicating that the stress exponent n of FGHAZ is distinguished between two regions with n=15.1 at high stresses (more than 100 MPa) and n=8.64 at lower stresses. Based on Monkman-Grant equation, the relationship between the secondary creep rate and time to rupture is obtained to evaluate the creep life of FGHAZ with the applied stress above 100 MPa. 展开更多
关键词 RESISTANT heat steel welding FINE grained heat-affected zone(FGHAZ) CREEP
下载PDF
Study on local embrittlement of welding heat-affected zone in XSO pipeline steels
10
作者 郝世英 高惠临 +1 位作者 张骁勇 周勇 《China Welding》 EI CAS 2011年第2期36-40,共5页
The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ... The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ) of experimental steels has the lowest toughness values when the secondary peak temperature is at intercritical ( α + γ ) region during multi-pass welding. The local embrittlement is mainly attributed to the morphology, amount and size of M-A constituent. It is also found that the microstructural inhabitanee at ICCGHAZ has a deleterious effect on the toughness. On the basis of above experimental results, it is suggested that the local embrittlement should be prevented by using pre-heating thermal cycle which could eliminate the microstructural inhabitance and using post-heating thermal cycle which could improve the morphology, amount and size of MA constituent. 展开更多
关键词 X80 pipeline steel MICROSTRUCTURE coarse-grain heat-affected zone local embrittlement
下载PDF
INFLUENCE OF THE SECOND THERMAL CYCLE ON COARSE- GRAINED ZONE TOUGHNESS OF X70 STEEL 被引量:6
11
作者 Y.Wang,T.Han and W.M.Zhao University of Petroleum,Dongying 257062,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期831-835,共5页
The influence of the second thermal cycle on coarse grained zone (CGHAZ) toughness of X70 steel is studied by weld thermal simulation test, scanning electron microscope and electron microprobe. The results show that ... The influence of the second thermal cycle on coarse grained zone (CGHAZ) toughness of X70 steel is studied by weld thermal simulation test, scanning electron microscope and electron microprobe. The results show that the CGHAZ toughness is improved after the second thermal cycle but being heated during the intercritical HAZ (ICHAZ). The CGHAZ toughness decreases evidently after being heated during partially transformed zone, which chiefly results from the carbon segregation to the grain boundaries of primal austenite, thus forming high carbon martensite austenite (M A) constituent and bringing serious intercritically reheated coarse grain HAZ (IRCGHAZ) embrittlement. 展开更多
关键词 weld thermal simulation pipeline steel heat affected zone impact toughness
下载PDF
Study on the microstructure of 12%chromium low carbon stainless steel in a high temperature heat-affected zone 被引量:4
12
作者 ZHENG Huaibei YE Xiaoning +3 位作者 WANG Baosen JIANG Laizhu LIU Zhenyu WANG Guodong 《Baosteel Technical Research》 CAS 2010年第1期40-44,共5页
Coarsening, embrittlement and corrosion sensitization in a high temperature heat-affected zone (HTHAZ) are the major problems when 12% chromium low carbon stainless steel is being welded, which induce the deteriorat... Coarsening, embrittlement and corrosion sensitization in a high temperature heat-affected zone (HTHAZ) are the major problems when 12% chromium low carbon stainless steel is being welded, which induce the deterioration of the impact toughness at a low temperature and intergranular corrosion resistance property. This study investigates the corresponding microstructures in HTHAZ with different chemical compositions and heat inputs through thermal simulation tests. The results show that the martensite content increases with the descending of ferrite factor (FF) when FF is below 9.0 and heat input influences the microstructure of high FF steel in HTHAZ. Martensite of 12% Cr stainless steel in HTHAZ with only Nb stabilization reticularly distributes at ferrite grain boundaries. 展开更多
关键词 ferritic stainless steel MICROSTRUCTURE welding heat affected zone
下载PDF
Effect of welding heat input on HAZ character in ultra-fine grain steel welding 被引量:3
13
作者 张富巨 许卫刚 +3 位作者 王玉涛 王燕 张学刚 廖永平 《China Welding》 EI CAS 2003年第2期122-127,共6页
In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap w... In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO 2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65 kJ/cm to 5.93 kJ/cm, the width of its HAZ ranged from 0.6 mm to 2.1 mm.The average grain size grew up from 2~5 μm of base metal to 20~70 μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding. 展开更多
关键词 heat input heat-affected zone ultra-fine grain steel ultra narrow-gap welding
下载PDF
Excellent heat affected zone toughness technology improved by strong deoxidizers 被引量:3
14
作者 YANG Jian1),ZHU Kai1),WANG Ruizhi1),ZHANG Yi2)and SHEN Jianguo1)1)Metallurgical Process Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China2)Analysis & Testing Center,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第4期32-36,共5页
Excellent heat affected zone(HAZ)toughness technology improved by strong deoxidizers(ETISI)technology has been developed by Baosteel.In the deoxidation process of molten steel by adding strong deoxidizers,the formatio... Excellent heat affected zone(HAZ)toughness technology improved by strong deoxidizers(ETISI)technology has been developed by Baosteel.In the deoxidation process of molten steel by adding strong deoxidizers,the formation of micrometer inclusions and nano-meter precipitates in steel plates can be effectively controlled by a precise control of oxygen concentration.In the welding process with a high-heat input,the formation of acicular ferrite can be selectively promoted with the aid of the micrometer inclusions;the growth of γ grains can also be selectively restrained by the pinning effect of the nano-meter precipitates.After welding with a high-heat input of 400 kJ/cm,excellent HAZ toughness can be obtained in the steel plates with both of the above microstructures,and the average absorbed energy is greater than 200 J for the V-notch Charpy impact test at-20℃. 展开更多
关键词 high-heat input welding heat affected zone TOUGHNESS oxide metallurgy INCLUSIONS
下载PDF
Residual Stresses and Micro-Hardness Testing in Evaluating the Heat Affected Zone’s Width of Ferritic Ductile Iron Arc Welds 被引量:1
15
作者 Georgios K. Triantafyllidis Dimitrios I. Zagliveris +5 位作者 Dionysios L. Kolioulis Christos S. Tsiompanis Titos N. Pasparakis Athanasios P. Gredis Melina L. Sfantou Ioannis E. Giouvanakis 《Materials Sciences and Applications》 2016年第1期73-82,共10页
Shielded Metal Arc Welding (SMAW) in Ductile Irons (DI) is often required by foundries for practical manufacturing reasons. The mechanical properties of the welded structures are strongly dependent on their HAZ’s wid... Shielded Metal Arc Welding (SMAW) in Ductile Irons (DI) is often required by foundries for practical manufacturing reasons. The mechanical properties of the welded structures are strongly dependent on their HAZ’s width. A model based on the behaviour of the ferritic matrix of high-Si DIs in order to make an approach in measuring their HAZ’s width is developed in this study. A series of thermal treatments on 3.35 and 3.75 wt% Si as-cast DIs and spot SMAWs is applied on these materials. The applied SMAWs are done on non-preheated and preheated samples (150℃ - 300℃). For welding we modify the amperage (100 - 140A). The micro-hardness Vickers changes in the ferrite of the as-cast samples and inside the HAZ of the welded ones can be attributed to the existence of residual stresses (RS) in the ferritic matrix and assist in estimating the HAZ’s width. 展开更多
关键词 WELDS heat affected zone Residual Stresses Micro-Hardness Vickers heat affected zone’s Width
下载PDF
Study on laser welded heat-affected zone in new ultralow carbon bainitic steel
16
作者 Lin Zhao Wuzhu Chen +1 位作者 Xudong Zhang Jiguo Shan 《Journal of University of Science and Technology Beijing》 CSCD 2007年第2期136-140,共5页
800 MPa grade ultralow carbon bainitic (NULCB) steel is the recently developed new generation steel, which was produced by thermo mechanical controlled processing & relaxation-precipitation controlling transformati... 800 MPa grade ultralow carbon bainitic (NULCB) steel is the recently developed new generation steel, which was produced by thermo mechanical controlled processing & relaxation-precipitation controlling transformation (TMCP&RPC) tech- nique. The microstructure and the mechanical properties of the heat-affected zone (HAZ) in NULCB steel under laser welding conditions were investigated by using a Gleeble-1500 thermal simulator. The experimental results indicate that the simplex microstructure in the HAZ is granular bainite that consists of bainite-ferrite (BF) lath and M-A constituent when the cooling time from 800 to 500℃ (t8/5) is 0.3-30 s, and the M-A constituent consists of twinned martensite and residual austenite. As t8/5 increases, the hardness and tensile strength of HAZ decreases, but they are higher than that of the base metal, indicating the absence of softened zone after laser welding. The impact toughness of HAZ increases at first and then decreases when t8/5 increases. The impact energy of HAZ is much higher than that of the base metal when t8/5 is between 3 and 15 s. It indicates that excellent low temperature toughness can be obtained under appropriate laser welding conditions. 展开更多
关键词 ultralow carbon bainitic steel laser welding heat-affected zone MICROSTRUCTURE mechanical properties
下载PDF
Effect of Magnesium on Inclusion Formation in Ti-Killed Steels and Microstructural Evolution in Welding Induced Coarse-Grained Heat Affected Zone 被引量:23
17
作者 CHAI Feng YANG Cai-fu +2 位作者 SU Hang ZHANG Yong-quan XU Zhou 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第1期69-74,共6页
Effects of Mg on the chemical component and size distribution of Ti-bearing inclusions favored grain refinement of the welding induced coarse-grained heat affected zone (CGHAZ), with enhanced impact toughness in Ti-... Effects of Mg on the chemical component and size distribution of Ti-bearing inclusions favored grain refinement of the welding induced coarse-grained heat affected zone (CGHAZ), with enhanced impact toughness in Ti-killed steels, which were examined based on experimental observations and thermodynamic calculations. The results indicated that the chemical constituents of the inclusions gradually varied from the Ti-O+Ti-Mg-O compound oxide to the Ti-Mg-O+MgO compound oxide and the single-phase MgO, as the Mg content increased from 0.002 3M to 0.006%. A trace addition of Mg (approximately 0. 002%) led to the refinement of Ti-bearing inclusions by creating the Ti-Mg-O compound oxide and provided favorable size distribution of the inclusions for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ with enhanced impact toughness. Otherwise, a high content of Mg (approximately 0. 006%) produced a single-phase MgO, which was impotent to nucleate an acicular ferrite, and a microstructure comprised of a ferrite side plate and a grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations. 展开更多
关键词 non-metallic inclusion MAGNESIUM acicular ferrite coarse-grained heat affected zone (CGHAZ)
原文传递
Development of steel plate for large-heat input welding by nanometer precipitates
18
作者 YANG Jian,ZHU Kai,WANG Ruizhi,ZHANG Yi, BAI Yan,WANG Guodong and SHEN Jianguo Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第S1期22-,共1页
The mechanism of the improvement of heat affected zone(HAZ) toughness with nanometer precipitates is discussed in this paper.The austenite grain growth during welding process can be effectively prevented with the aid ... The mechanism of the improvement of heat affected zone(HAZ) toughness with nanometer precipitates is discussed in this paper.The austenite grain growth during welding process can be effectively prevented with the aid of the pinning effect of fine particles,so that the steel plate can be improved in large-heat input welding performance.The oxide metallurgy technology with strong deoxidizers is developed in Baosteel.Large number of nanometer precipitates are formed during deoxidation,solidification and phase transformation processes.With the pinning effect of these fine particles,after welding with large-heat input of 400 kJ/cm,the average austenite grain size is 61μm in HAZ,the average energy absorbed value is 142 J for V-notch Charpy test at - 20℃. 展开更多
关键词 large-heat input welding heat affected zone toughness oxide metallurgy nanometer precipitate
下载PDF
Prediction of HAZ grain size in welding of ultra fine grained steel with different parameters
19
作者 赵洪运 张洪涛 +1 位作者 李冬青 王国栋 《China Welding》 EI CAS 2010年第4期63-67,共5页
The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method. The principle of grain growth kinetic... The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method. The principle of grain growth kinetics was used to predict the grain size in the heat-affected zone under different welding parameters. The simulation results show that the growing tendency of HAZ grain could be controlled by adjusting the welding parameters, but the growth of HAZ grain could not be eliminated at all. The HAZ grain size became small with increasing of the cooling rate and added with increasing of welding current, arc voltage and welding speed. 展开更多
关键词 ultra fine grained steel thermal cycling curve welding heat-affected zone grain size
下载PDF
微量元素对超大线能量EH36船板热影响区粗晶区组织和性能的影响 被引量:1
20
作者 韩美 张熹 +4 位作者 马青军 魏玉顺 韦晨 王泽军 贾云海 《焊接学报》 EI CAS CSCD 北大核心 2024年第2期47-53,I0005,I0006,共9页
通过焊接热模拟研究了在超大线能量下焊接时Al元素、Mg元素和Ti元素含量对EH36高强船板钢热影响区粗晶区组织、性能的影响规律,采用Thermo-Calc热力学计算与SEM,EDS测试相结合的方法揭示了Al元素、Mg元素和Ti元素含量与母材中氧化物类... 通过焊接热模拟研究了在超大线能量下焊接时Al元素、Mg元素和Ti元素含量对EH36高强船板钢热影响区粗晶区组织、性能的影响规律,采用Thermo-Calc热力学计算与SEM,EDS测试相结合的方法揭示了Al元素、Mg元素和Ti元素含量与母材中氧化物类型、尺寸、数量及粗晶区相变的关系.结果表明,Al_(2)O_(3)无法诱导针状铁素体相变,当Al元素质量分数低于0.005%时,钢中可形成Mg元素、Ti元素或其复合氧化物,可促进粗晶区针状铁素体相变.Mg元素和Ti元素联合添加时,当Mg元素质量分数由0.0042%降低为0.0013%,氧化物类型由MgO转变为Mg_(2)TiO_(4),经统计20个视场内的氧化物数量由408个提高到503个,平均直径由1.37μm减小到1.10μm,显著提高了非均匀形核的比表面积,抑制了晶界铁素体的形成,使t8/5=300 s时粗晶区热模拟试样-20℃冲击吸收能量由43 J提升到127 J. 展开更多
关键词 微量元素 船板 超大线能量 热影响区粗晶区
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部