Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried ...Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried out by changing voltage under different currents. The results indicate voltage range being fit for UNGW is about 22 -31 V under the current range of 200 -320 A. With the increasing of voltage, weld formation of UNGW has the law of lack of fusion on sidewall, good weld and undercut in turn under a certain current. In addition, the action relationships among arc, molten slag wall and sidewalls can be improved by properly adjusting voltage and current of arc, which makes cathode spot properly distribute in ultra-narrow gap. Therefore, the effective control of weld formation of UNGW has been achieved.展开更多
Because of the relativity among the parameters, partial least square regression(PLSR)was applied to build the model and get the regression equation. The improved algorithm simplified the calculating process greatly be...Because of the relativity among the parameters, partial least square regression(PLSR)was applied to build the model and get the regression equation. The improved algorithm simplified the calculating process greatly because of the reduction of calculation. The orthogonal design was adopted in this experiment. Every sample had strong representation, which could reduce the experimental time and obtain the overall test data. Combined with the formation problem of gas metal arc weld with big current, the auxiliary analysis technique of PLSR was discussed and the regression equation of form factors (i.e. surface width, weld penetration and weld reinforcement) to process parameters(i.e. wire feed rate, wire extension, welding speed, gas flow, welding voltage and welding current)was given. The correlativity structure among variables was analyzed and there was certain correlation between independent variables matrix X and dependent variables matrix Y. The regression analysis shows that the welding speed mainly influences the weld formation while the variation of gas flow in certain range has little influence on formation of weld. The fitting plot of regression accuracy is given. The fitting quality of regression equation is basically satisfactory.展开更多
A novel rotating arc horizontal welding process was developed for solving the sagging of the molten pool which bottlenecks the application and the development of the horizontal welding. The principle of the effect of ...A novel rotating arc horizontal welding process was developed for solving the sagging of the molten pool which bottlenecks the application and the development of the horizontal welding. The principle of the effect of the rotating arc on the molten pool is that the rotating arc process not only can reduce the welding heat input by prolonging the welding path in the same welding distance cawed by the arc rotation, but also disperse the arc force to affect the sidewall periodically to support the molten metal near the upper sidewall. The effects of the rotating speed and arc voltage on the weld formation were studied. The results indicate that there is an appropriate range of the rotating speed and the arc voltage to obtain the defect free horizontal welding.展开更多
The effect of the shielding gas composition and the cathode processing history on the weld formation quality during welding with a non-consumable electrode at high current was studied. The major reasons for pores, “w...The effect of the shielding gas composition and the cathode processing history on the weld formation quality during welding with a non-consumable electrode at high current was studied. The major reasons for pores, “waists” and undercuts formation during welding at high currents and speed are discrete melt movement to the solidification front due to the arc decline from the cathode axis and significant melt overhanging in the pool tail part caused by excessive peak pressure on the discharge axis. Cathode flow dispersion causes the lack of displacement of the molten metal which results in its laminar flow in the weld pool, uniform flow of the metal to the crystallization front and sound weld formation. The melt movement in the weld pool and eventually the welded joint quality is determined by the pressure distribution pattern on the welded metal surface and the anode spot lag from the electrode. It was demonstrated that non-consumable electrode configurations that provide arcing with a diffuse cathode spot and increased helium concentration in the inert atmosphere during welding with a conical electrode allow sound weld formation.展开更多
In the friction stir welding (FSW) process, welding speed and tool rotation speed are two important parameters, which have great effect on the weld quality. Because neither of each parameter can ensure the welding p...In the friction stir welding (FSW) process, welding speed and tool rotation speed are two important parameters, which have great effect on the weld quality. Because neither of each parameter can ensure the welding process effectively, an energy factor n, which is the ratio of rotation speed(to) to welding speed (v), was selected to represent the heat generation intensity. According to this energy input factor n, the effect of heat input on the weld quality was estimated qualitatively. The results show that the optimized scope for the factor n should be within 2. 5 and 6. 0, outside of which groove defects and burr defects will appear.展开更多
The mechanisms of weld formation, spatter and projected transfer in CO2 arc welding are revealed based on the experiment and study of the arc physics. The views are beneficial to develop CO2 arc welding technology.
Short-arc pulsed gas metal arc welding(P-GMAW)was used to solve the dificulties of molten pool spreading and droplet transfer of Ni-based welding wire.Suppression of short-circuit current was used to reduce spatter.Ar...Short-arc pulsed gas metal arc welding(P-GMAW)was used to solve the dificulties of molten pool spreading and droplet transfer of Ni-based welding wire.Suppression of short-circuit current was used to reduce spatter.Arc length stabilizer was used to acquire a proper and stable arc length maintained at the critical position where short circuit starts to occur.Short-arc P-GMAW with or without arc length stabilizer was compared.The droplet transfer,arc behaviors and weld bead profiles were investigated and compared based on the high-speed photography and observation of weld cross-section.When the arc length stabilizer was deactivated,the arc length was unstable and too short.The droplet transfer mode was mainly short circuit partial transfer,with only a small part of the droplet transferred into the molten pool,with the characteristics of no obvious necking,a few spatters,small droplet impact,long short circuit duration and high short-circuit current.There was also a small proportion of short circuit complete transfer with obvious necking,larger droplet impact,shorter short-circuit duration and lower short-circuit current.With arc length stabilizer,droplet transfer modes were short circuit complete transfer and spray transfer.The spray transfer had the largest droplet impact,no short circuit and no spatter.With the arc length stabilizer activated,a deep penetration,a high penetration ratio,a small reinforcement and a large reinforcement factor were acquired.This provides an innovative method to solve the difficulties of droplet transfer and molten pool spreading and eliminate the incomplete fusion in the GMAW of 9%Ni steel with nickel-based alloy welding wire.展开更多
基金The work was supported by National Natural Science Foundation of China (51105185) and Advanced Project Foundation of Jinchuan Company(420032).
文摘Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried out by changing voltage under different currents. The results indicate voltage range being fit for UNGW is about 22 -31 V under the current range of 200 -320 A. With the increasing of voltage, weld formation of UNGW has the law of lack of fusion on sidewall, good weld and undercut in turn under a certain current. In addition, the action relationships among arc, molten slag wall and sidewalls can be improved by properly adjusting voltage and current of arc, which makes cathode spot properly distribute in ultra-narrow gap. Therefore, the effective control of weld formation of UNGW has been achieved.
文摘Because of the relativity among the parameters, partial least square regression(PLSR)was applied to build the model and get the regression equation. The improved algorithm simplified the calculating process greatly because of the reduction of calculation. The orthogonal design was adopted in this experiment. Every sample had strong representation, which could reduce the experimental time and obtain the overall test data. Combined with the formation problem of gas metal arc weld with big current, the auxiliary analysis technique of PLSR was discussed and the regression equation of form factors (i.e. surface width, weld penetration and weld reinforcement) to process parameters(i.e. wire feed rate, wire extension, welding speed, gas flow, welding voltage and welding current)was given. The correlativity structure among variables was analyzed and there was certain correlation between independent variables matrix X and dependent variables matrix Y. The regression analysis shows that the welding speed mainly influences the weld formation while the variation of gas flow in certain range has little influence on formation of weld. The fitting plot of regression accuracy is given. The fitting quality of regression equation is basically satisfactory.
文摘A novel rotating arc horizontal welding process was developed for solving the sagging of the molten pool which bottlenecks the application and the development of the horizontal welding. The principle of the effect of the rotating arc on the molten pool is that the rotating arc process not only can reduce the welding heat input by prolonging the welding path in the same welding distance cawed by the arc rotation, but also disperse the arc force to affect the sidewall periodically to support the molten metal near the upper sidewall. The effects of the rotating speed and arc voltage on the weld formation were studied. The results indicate that there is an appropriate range of the rotating speed and the arc voltage to obtain the defect free horizontal welding.
基金supported by the Volgograd State Technical University,in conducting this research study as a part of the state assignment of the Ministry of Science and Higher Education of the Russian Federation(Grant No.0637-2020-0006)。
文摘The effect of the shielding gas composition and the cathode processing history on the weld formation quality during welding with a non-consumable electrode at high current was studied. The major reasons for pores, “waists” and undercuts formation during welding at high currents and speed are discrete melt movement to the solidification front due to the arc decline from the cathode axis and significant melt overhanging in the pool tail part caused by excessive peak pressure on the discharge axis. Cathode flow dispersion causes the lack of displacement of the molten metal which results in its laminar flow in the weld pool, uniform flow of the metal to the crystallization front and sound weld formation. The melt movement in the weld pool and eventually the welded joint quality is determined by the pressure distribution pattern on the welded metal surface and the anode spot lag from the electrode. It was demonstrated that non-consumable electrode configurations that provide arcing with a diffuse cathode spot and increased helium concentration in the inert atmosphere during welding with a conical electrode allow sound weld formation.
文摘In the friction stir welding (FSW) process, welding speed and tool rotation speed are two important parameters, which have great effect on the weld quality. Because neither of each parameter can ensure the welding process effectively, an energy factor n, which is the ratio of rotation speed(to) to welding speed (v), was selected to represent the heat generation intensity. According to this energy input factor n, the effect of heat input on the weld quality was estimated qualitatively. The results show that the optimized scope for the factor n should be within 2. 5 and 6. 0, outside of which groove defects and burr defects will appear.
文摘The mechanisms of weld formation, spatter and projected transfer in CO2 arc welding are revealed based on the experiment and study of the arc physics. The views are beneficial to develop CO2 arc welding technology.
基金the MARK III Materials Research Project of Ministry of Industry and Information Technology of China。
文摘Short-arc pulsed gas metal arc welding(P-GMAW)was used to solve the dificulties of molten pool spreading and droplet transfer of Ni-based welding wire.Suppression of short-circuit current was used to reduce spatter.Arc length stabilizer was used to acquire a proper and stable arc length maintained at the critical position where short circuit starts to occur.Short-arc P-GMAW with or without arc length stabilizer was compared.The droplet transfer,arc behaviors and weld bead profiles were investigated and compared based on the high-speed photography and observation of weld cross-section.When the arc length stabilizer was deactivated,the arc length was unstable and too short.The droplet transfer mode was mainly short circuit partial transfer,with only a small part of the droplet transferred into the molten pool,with the characteristics of no obvious necking,a few spatters,small droplet impact,long short circuit duration and high short-circuit current.There was also a small proportion of short circuit complete transfer with obvious necking,larger droplet impact,shorter short-circuit duration and lower short-circuit current.With arc length stabilizer,droplet transfer modes were short circuit complete transfer and spray transfer.The spray transfer had the largest droplet impact,no short circuit and no spatter.With the arc length stabilizer activated,a deep penetration,a high penetration ratio,a small reinforcement and a large reinforcement factor were acquired.This provides an innovative method to solve the difficulties of droplet transfer and molten pool spreading and eliminate the incomplete fusion in the GMAW of 9%Ni steel with nickel-based alloy welding wire.