Current research of binocular vision systems mainly need to resolve the camera’s intrinsic parameters before the reconstruction of three-dimensional(3D)objects.The classical Zhang’calibration is hardly to calculate ...Current research of binocular vision systems mainly need to resolve the camera’s intrinsic parameters before the reconstruction of three-dimensional(3D)objects.The classical Zhang’calibration is hardly to calculate all errors caused by perspective distortion and lens distortion.Also,the image-matching algorithm of the binocular vision system still needs to be improved to accelerate the reconstruction speed of welding pool surfaces.In this paper,a preset coordinate system was utilized for camera calibration instead of Zhang’calibration.The binocular vision system was modified to capture images of welding pool surfaces by suppressing the strong arc interference during gas metal arc welding.Combining and improving the algorithms of speeded up robust features,binary robust invariant scalable keypoints,and KAZE,the feature information of points(i.e.,RGB values,pixel coordinates)was extracted as the feature vector of the welding pool surface.Based on the characteristics of the welding images,a mismatch-elimination algorithm was developed to increase the accuracy of image-matching algorithms.The world coordinates of matching feature points were calculated to reconstruct the 3D shape of the welding pool surface.The effectiveness and accuracy of the reconstruction of welding pool surfaces were verified by experimental results.This research proposes the development of binocular vision algorithms that can reconstruct the surface of welding pools accurately to realize intelligent welding control systems in the future.展开更多
The formed characteristics of thin-wall part is studied when it is in the process of MPAW. Finite element method is used to sinmlate the temperature field coupling flow field in the welding of thin-wall part. It is fo...The formed characteristics of thin-wall part is studied when it is in the process of MPAW. Finite element method is used to sinmlate the temperature field coupling flow field in the welding of thin-wall part. It is found that because of the obvious effect of heat accumution in cross-section, where the distribution of temperature field area presents trapezoidal inverted approximately in the molten pool and the non-molten pool area presents level. The surface tension, the electromagnetic force and buoyancy are considered for analyzing the effects on the fluid flow of welding-pool. It can be obtained that the surface tension is the main driving force in the welding pool, which is far greater than electromagnetic force and buoyancy.展开更多
Based on the three-dimensional model of TIG weld pool established,the effect of the arc force on liquid surface was investigated.The simulation was carried out with finite elements software Surface Evolver.The influen...Based on the three-dimensional model of TIG weld pool established,the effect of the arc force on liquid surface was investigated.The simulation was carried out with finite elements software Surface Evolver.The influence of the arc force on the weld pool shape was also studied.According to the results,the variation of the weld shape and the parameters with different arc force strength was obtained.Compared with the back weld pool,the top weld pool was influenced more strongly by the arc force.These results provide an effective basis for further study of the TIG weld pool.展开更多
In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the qualit...In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the quality information. Abundant weld quality information is contained in weld pool and keyhole. Aiming at Nd:YAG laser welding of stainless steel, a coaxial visual sensing system was constructed. The images of weld pool and keyhole were obtained. Based on the gray character of weld pool and keyhole in images, an image processing algorithm was designed. The search start point and search criteria of weld pool and keyhole edge were determined respectively.展开更多
A mathematical model is developed for numerical analysis of thermal process in TIG welding with a moving arc, which is considered the double-elliptic distribution for both arc heat flux and arc pressure. An adjusting ...A mathematical model is developed for numerical analysis of thermal process in TIG welding with a moving arc, which is considered the double-elliptic distribution for both arc heat flux and arc pressure. An adjusting factor is introduced into the expression of arc pressure. The domain within which the arc heat flux is distributed non-symmetrically due to arc moving is selected appropriately, and three conditions for the domain to meet are described. The latent heat is taken into consideration by liquid fraction method. The dynamic development of weld pool geometry during TIG welding is analyzed numerically, and the effect of arc moving on the weld pool geometry is discussed. The experimental results show that the numerical analysis accuracy is obviously improved through taking the above-mentioned measures.展开更多
In order to realize automatic control of the width of weld pool, a visual sensor system for the width of weld pool detection is developed. By initiative arc light, the image of copper plate weld pool is taken back of ...In order to realize automatic control of the width of weld pool, a visual sensor system for the width of weld pool detection is developed. By initiative arc light, the image of copper plate weld pool is taken back of the torch through the process of weakening and filtering arc light. In order to decrease the time of processing video signals, analog circuit is applied in the processing where video signals is magnified, trimmed and processed into binary on the datum of dynamic average value, therefore the waveform of video signals of weld pool is obtained. The method that is used for detecting the width of weld pool is established. Results show that the vision sensing method for real-time detecting weld pool width to copper-clad aluminum wire TIG welding is feasible. The response cycle of this system is no more than 50 ms, and the testing precision is less than 0. 1 mm.展开更多
A two-dimensional axisymmetric mathematical model of weld pool of pulsed TIG welding was established. Numerical simulation for weld pool of pulsed TIG welding was done using FLUENT software by selecting the appropriat...A two-dimensional axisymmetric mathematical model of weld pool of pulsed TIG welding was established. Numerical simulation for weld pool of pulsed TIG welding was done using FLUENT software by selecting the appropriate boundary conditions and strongly coupled control equations. The distributions of temperature field and flow field of weld pool under the periodic change of welding current were obtained. According to the maximum temperature of upper and lower surface of workpiece and depth and width of weld pool, the distributions of temperature field and flow field under different pulsed frequencies and current duty cycles were obtained and periodic variation was analyzed under pulsed current. The analysis results show that with the increase of pulsed frequency, weld pool width increases slightly while depth decreases slightly, and with the increase of current duty cycle, the width and depth of weld pool both increase significantly, and the depth increases greatly.展开更多
A visual sensing system was established to monitor the weld pool in laser spot welding. The top-hat and bottom-hat transformation algorithms based on mathematical morphology were used to compensate for non-uniform con...A visual sensing system was established to monitor the weld pool in laser spot welding. The top-hat and bottom-hat transformation algorithms based on mathematical morphology were used to compensate for non-uniform contrast of weld pool edge. Moreover, the canny edge detector was applied to extract the weld paol profile. The edge detected results show that the morphological operation is obviously superior to the traditional contrast enhancement method. In addition, the combination of dilation and erosion was applied to eliminate the irrelevant edge details, and the smooth weld pool edge was acquired. Based on the image processing technology described above, the dynamic process of weld pool diameter during laser spot welding was obtained.展开更多
Visual image sensor is developed to detect the weld pool images in pulsed MIG welding. An exposure controller, which is composed of the modules of the voltage transforming, the exposure parameters presetting, the comp...Visual image sensor is developed to detect the weld pool images in pulsed MIG welding. An exposure controller, which is composed of the modules of the voltage transforming, the exposure parameters presetting, the complex programmable logic device (CPLD) based logic controlling, exposure signal processing, the arc state detecting, the mechanical iris driving and so on, is designed at first. Then, a visual image sensor consists of an ordinary CCD camera, optical system and exposure controller is established. The exposure synchronic control logic is described with very-high-speed integrated circuit hardware description language (VHDL) and programmed with CPLD , to detect weld pool images at the stage of base current in pulsed MIG welding. Finally, both bead on plate welding and V groove filled welding are carried out, clear and consistent weld pool images are acquired.展开更多
A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input ...A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are fimctions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement between calculated overall shape of the weld pool and the experimental one was acceptable, especially in low applied currents. Therefore, it can be concluded that in pure aluminium, the heat conduction is dominant mechanism of heat transfer in the weld pool.展开更多
Using highspeed camera image measuring and processing,the contour of the weld pool was extracted accurately in pulsed metal inert gas(P-MIG)welding.Based on this extraction method,time and frequency domain characteris...Using highspeed camera image measuring and processing,the contour of the weld pool was extracted accurately in pulsed metal inert gas(P-MIG)welding.Based on this extraction method,time and frequency domain characteristics at different points along the contour of the weld pool were analyzed for one pulse one droplet and one pulse two droplets,respectively.The results show that,because of the wave super position that was created by the pulsed arc and droplet impacting the weld pool,the oscillation amplitude along the weld pool fluctuated and decreased with an increase in distance from the point to the arc center.The oscillation near the arc center was complex and intense for one pulse two droplets,and the amplitude were relatively small because the oscillation caused by the pulsed arc could be offset by the molten droplet impact.The weld pool oscillation that was caused by the pulsed arc was stronger than that caused by the droplet.展开更多
Researchers have recently attempted to monitor pool oscillations using the three-dimensional laser vision method.However,the deficiency of simulation software will result in significant capital expenditure.Both simula...Researchers have recently attempted to monitor pool oscillations using the three-dimensional laser vision method.However,the deficiency of simulation software will result in significant capital expenditure.Both simulations and experiments are performed in this study,and the Bessel equation is used to analyze the oscillation mode of a weld pool.The laser dot matrix images of(0,1),(1,1),(2,1),and(0,2)oscillation modes at different times are obtained via structured laser optical measurement simulation.The oscillation mode of a stationary gas tungsten arc weld pool is analyzed based on laser dot matrix images obtained from a structure laser experiment.Results show that the simulated laser dot matrix images are consistent with the experiment results.The oscillation mode of the weld pool can be recognized based on the laser dot matrix image.This study not only provides conditions for assessing the penetrating state of a weld pool,but also enable a further understanding of the oscillation mode of a weld pool and the development of more effective observation methods and measurement tools to effectively control and improve welding quality.展开更多
Laser welding is one of high efficiency, high energy density welding methods. Quality control should be applied to ensure good welding quality. Weld pool and keyhole contains abundant information of welding quality. G...Laser welding is one of high efficiency, high energy density welding methods. Quality control should be applied to ensure good welding quality. Weld pool and keyhole contains abundant information of welding quality. Good image processing algorithm is necessary in quality control system based on visual sensing. Aiming at the image captured by a coaxial visual sensing system for laser welding, an image processing algorithm is designed. An edge predicting method is proposed in image processing algorithm which is based on the fact that the local shape of weld pool can be fitted to a circle. The results show that the algorithm works well. It lays solid foundation for further quality control in laser welding.展开更多
The dynamic behaviors of the keyhole and weld pool are coupled together in plasma arc welding, and the geometric variations of both the keyhole and the weld pool determine the weld quality. It is of great significance...The dynamic behaviors of the keyhole and weld pool are coupled together in plasma arc welding, and the geometric variations of both the keyhole and the weld pool determine the weld quality. It is of great significance to simultaneously sense and monitor the keyhole and the weld pool behaviors by using a single low-cost vision sensor in plasma arc welding process. In this study, the keyhole and weld pool were observed and measured under different levels of welding current by using the near infrared sensing technology and the charge coupled device (CCD) sensing system. The shapes and relative position of weld pool and keyhole under different conditions were compared and analyzed. The observation results lay solid foundation for controlling weld quality and understanding the underlying process mechanisms.展开更多
A mathematical model was established to simulate the weld pool development and dynamic process in stationary iaser-MlG hybrid welding. Surface tension and buoyancy were considered to calculate liquid metal flow patter...A mathematical model was established to simulate the weld pool development and dynamic process in stationary iaser-MlG hybrid welding. Surface tension and buoyancy were considered to calculate liquid metal flow patter, moreover, typical phenomena of MIG welding, such as filler droplets impinging weld pool, electromagnetic force in the weld pool, and typical phenomena of laser beam welding, such as recoil pressure, Inverse Bremsstrahlung absorption, Fresnel absorption were all considered in the model. The laser beam and arc couple effect were introduced into this model by the plasma width during hybrid welding. The role of recoil pressure in the weld formation was discussed. Transient weld pool shape and complicated liquid metal velocity distribution from two kinds weld pool to an unified weld pool were calculated. The simulated weld bead geometry with consideration recoil pressure was in good agreement with experimental measurement.展开更多
Numerical analysis of weld pool shape and size is of great significance for selection and optimization of the process parameters in pulsed current plasma arc welding (PAW). In this paper, a mathematical model and re...Numerical analysis of weld pool shape and size is of great significance for selection and optimization of the process parameters in pulsed current plasma arc welding (PAW). In this paper, a mathematical model and relevant algorithm are developed to determine the temperature profiles and weld pool geometry in pulsed current PAW through employing an adaptive heat source model. The volumetric heat source consists of semi-ellipsoid at upper part and a conic body at lower part along the workpiece thickness direction. The dynamic variation features of weld pool shape during a pulse cycle are numerically simulated. The calculated weld cross-section is consistent with the measure one.展开更多
This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the...This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the structure of single ended inverter with two switches, and takes IGBTs as power switches. The working frequency of the inverter is set at 20 kHz. The control circuit takes PWM circuit as center, and uses single chip computer to complete the manage functions such as the control of working sequence, setting and changing of the welding parameters, sensing of the welding states and communication with outside computer etc. The dynamic reacting time of the whole power is 1 ms, the range of the output current is 5~250 A, the precision of the output current reaches to 1 A. The power strikes arc by contacting workpiece under 5 A, and have convenient interface with system computer. All above shows this power source is one with high performance.展开更多
A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpi...A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China展开更多
In order to discover characteristics of various kinds of weld pool image and identify a single image, seven image features are extracted to describe the corresponding surface formation quality by the moment iavariants...In order to discover characteristics of various kinds of weld pool image and identify a single image, seven image features are extracted to describe the corresponding surface formation quality by the moment iavariants method. An image feature matrix is composed by the seven characteristics. Then the matrix is projected on a line through the Fisher criterion in order to entirely distinguish various kinds of image features. And finally, transforming a seven-dimensional problem into a one-dimensional problem has been done. Compared with the three kinds of samples included in the arc welding process and quality weld pool visual image database, the images are classified into the three kinds such as superior weld formation in the condition of optimal gas flow, poor weld formation image in the condition of insuffwient gas flow, inferior weld formation in the condition of too low gas flow. Experiments show that the Fisher classification method based on moment invariants can recognize various weld pool images effectively, and it achieves a correct recognizable rate of 100%.展开更多
A sensing system is developed to measure the weld pool boundary and pool suoface deformation in gas tungsten arc welding. LaserStrobe technique is used to eliminate the strong arc light inteoference, and specular refl...A sensing system is developed to measure the weld pool boundary and pool suoface deformation in gas tungsten arc welding. LaserStrobe technique is used to eliminate the strong arc light inteoference, and specular reflection from the pool suoface is sensed to describe the relation between the deformed stripes and pool surface depression. Clear images of both the pool boundary and the deformed stripes edges are obtained during gas tungsten arc welding process, which lays foundation for realtime monitoring the pool suoface depression and weld penetration.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51775313)Major Program of Shandong Province Natural Science Foundation(Grant No.ZR2018ZC1760)Young Scholars Program of Shandong University(Grant No.2017WLJH24).
文摘Current research of binocular vision systems mainly need to resolve the camera’s intrinsic parameters before the reconstruction of three-dimensional(3D)objects.The classical Zhang’calibration is hardly to calculate all errors caused by perspective distortion and lens distortion.Also,the image-matching algorithm of the binocular vision system still needs to be improved to accelerate the reconstruction speed of welding pool surfaces.In this paper,a preset coordinate system was utilized for camera calibration instead of Zhang’calibration.The binocular vision system was modified to capture images of welding pool surfaces by suppressing the strong arc interference during gas metal arc welding.Combining and improving the algorithms of speeded up robust features,binary robust invariant scalable keypoints,and KAZE,the feature information of points(i.e.,RGB values,pixel coordinates)was extracted as the feature vector of the welding pool surface.Based on the characteristics of the welding images,a mismatch-elimination algorithm was developed to increase the accuracy of image-matching algorithms.The world coordinates of matching feature points were calculated to reconstruct the 3D shape of the welding pool surface.The effectiveness and accuracy of the reconstruction of welding pool surfaces were verified by experimental results.This research proposes the development of binocular vision algorithms that can reconstruct the surface of welding pools accurately to realize intelligent welding control systems in the future.
基金supported by the National Natural Science Foundation of China(Grant No.U1333128,U1733125)Science and Technology Project of Tianjin(Grant No.14ZCDZGX00802,17JCZDJC38700)
文摘The formed characteristics of thin-wall part is studied when it is in the process of MPAW. Finite element method is used to sinmlate the temperature field coupling flow field in the welding of thin-wall part. It is found that because of the obvious effect of heat accumution in cross-section, where the distribution of temperature field area presents trapezoidal inverted approximately in the molten pool and the non-molten pool area presents level. The surface tension, the electromagnetic force and buoyancy are considered for analyzing the effects on the fluid flow of welding-pool. It can be obtained that the surface tension is the main driving force in the welding pool, which is far greater than electromagnetic force and buoyancy.
文摘Based on the three-dimensional model of TIG weld pool established,the effect of the arc force on liquid surface was investigated.The simulation was carried out with finite elements software Surface Evolver.The influence of the arc force on the weld pool shape was also studied.According to the results,the variation of the weld shape and the parameters with different arc force strength was obtained.Compared with the back weld pool,the top weld pool was influenced more strongly by the arc force.These results provide an effective basis for further study of the TIG weld pool.
基金Project (10776020) supported by the Joint Foundation of the National Natural Science Foundation of China and China Academy of Engineering Physics
文摘In order to obtain good welding quality, it is necessary to apply quality control because there are many influencing factors in laser welding process. The key to realize welding quality control is to obtain the quality information. Abundant weld quality information is contained in weld pool and keyhole. Aiming at Nd:YAG laser welding of stainless steel, a coaxial visual sensing system was constructed. The images of weld pool and keyhole were obtained. Based on the gray character of weld pool and keyhole in images, an image processing algorithm was designed. The search start point and search criteria of weld pool and keyhole edge were determined respectively.
基金the financial support for this project from the National Natural Science Foundation of China under Grant No.50475131.
文摘A mathematical model is developed for numerical analysis of thermal process in TIG welding with a moving arc, which is considered the double-elliptic distribution for both arc heat flux and arc pressure. An adjusting factor is introduced into the expression of arc pressure. The domain within which the arc heat flux is distributed non-symmetrically due to arc moving is selected appropriately, and three conditions for the domain to meet are described. The latent heat is taken into consideration by liquid fraction method. The dynamic development of weld pool geometry during TIG welding is analyzed numerically, and the effect of arc moving on the weld pool geometry is discussed. The experimental results show that the numerical analysis accuracy is obviously improved through taking the above-mentioned measures.
文摘In order to realize automatic control of the width of weld pool, a visual sensor system for the width of weld pool detection is developed. By initiative arc light, the image of copper plate weld pool is taken back of the torch through the process of weakening and filtering arc light. In order to decrease the time of processing video signals, analog circuit is applied in the processing where video signals is magnified, trimmed and processed into binary on the datum of dynamic average value, therefore the waveform of video signals of weld pool is obtained. The method that is used for detecting the width of weld pool is established. Results show that the vision sensing method for real-time detecting weld pool width to copper-clad aluminum wire TIG welding is feasible. The response cycle of this system is no more than 50 ms, and the testing precision is less than 0. 1 mm.
基金This work was financially supported by National Natural Science Foundation of China No. 51205179.
文摘A two-dimensional axisymmetric mathematical model of weld pool of pulsed TIG welding was established. Numerical simulation for weld pool of pulsed TIG welding was done using FLUENT software by selecting the appropriate boundary conditions and strongly coupled control equations. The distributions of temperature field and flow field of weld pool under the periodic change of welding current were obtained. According to the maximum temperature of upper and lower surface of workpiece and depth and width of weld pool, the distributions of temperature field and flow field under different pulsed frequencies and current duty cycles were obtained and periodic variation was analyzed under pulsed current. The analysis results show that with the increase of pulsed frequency, weld pool width increases slightly while depth decreases slightly, and with the increase of current duty cycle, the width and depth of weld pool both increase significantly, and the depth increases greatly.
文摘A visual sensing system was established to monitor the weld pool in laser spot welding. The top-hat and bottom-hat transformation algorithms based on mathematical morphology were used to compensate for non-uniform contrast of weld pool edge. Moreover, the canny edge detector was applied to extract the weld paol profile. The edge detected results show that the morphological operation is obviously superior to the traditional contrast enhancement method. In addition, the combination of dilation and erosion was applied to eliminate the irrelevant edge details, and the smooth weld pool edge was acquired. Based on the image processing technology described above, the dynamic process of weld pool diameter during laser spot welding was obtained.
基金This work was supported by the National High Technology Research and Development Program("863"Program) of China ( ContractNo 2007AA04Z258)
文摘Visual image sensor is developed to detect the weld pool images in pulsed MIG welding. An exposure controller, which is composed of the modules of the voltage transforming, the exposure parameters presetting, the complex programmable logic device (CPLD) based logic controlling, exposure signal processing, the arc state detecting, the mechanical iris driving and so on, is designed at first. Then, a visual image sensor consists of an ordinary CCD camera, optical system and exposure controller is established. The exposure synchronic control logic is described with very-high-speed integrated circuit hardware description language (VHDL) and programmed with CPLD , to detect weld pool images at the stage of base current in pulsed MIG welding. Finally, both bead on plate welding and V groove filled welding are carried out, clear and consistent weld pool images are acquired.
文摘A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are fimctions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement between calculated overall shape of the weld pool and the experimental one was acceptable, especially in low applied currents. Therefore, it can be concluded that in pure aluminium, the heat conduction is dominant mechanism of heat transfer in the weld pool.
基金This work was supported by the National Natural Science Foundation of China(Grant Numbers 51205283).
文摘Using highspeed camera image measuring and processing,the contour of the weld pool was extracted accurately in pulsed metal inert gas(P-MIG)welding.Based on this extraction method,time and frequency domain characteristics at different points along the contour of the weld pool were analyzed for one pulse one droplet and one pulse two droplets,respectively.The results show that,because of the wave super position that was created by the pulsed arc and droplet impacting the weld pool,the oscillation amplitude along the weld pool fluctuated and decreased with an increase in distance from the point to the arc center.The oscillation near the arc center was complex and intense for one pulse two droplets,and the amplitude were relatively small because the oscillation caused by the pulsed arc could be offset by the molten droplet impact.The weld pool oscillation that was caused by the pulsed arc was stronger than that caused by the droplet.
基金Supported by National Natural Science Foundation of China(Grant No.51205197).
文摘Researchers have recently attempted to monitor pool oscillations using the three-dimensional laser vision method.However,the deficiency of simulation software will result in significant capital expenditure.Both simulations and experiments are performed in this study,and the Bessel equation is used to analyze the oscillation mode of a weld pool.The laser dot matrix images of(0,1),(1,1),(2,1),and(0,2)oscillation modes at different times are obtained via structured laser optical measurement simulation.The oscillation mode of a stationary gas tungsten arc weld pool is analyzed based on laser dot matrix images obtained from a structure laser experiment.Results show that the simulated laser dot matrix images are consistent with the experiment results.The oscillation mode of the weld pool can be recognized based on the laser dot matrix image.This study not only provides conditions for assessing the penetrating state of a weld pool,but also enable a further understanding of the oscillation mode of a weld pool and the development of more effective observation methods and measurement tools to effectively control and improve welding quality.
文摘Laser welding is one of high efficiency, high energy density welding methods. Quality control should be applied to ensure good welding quality. Weld pool and keyhole contains abundant information of welding quality. Good image processing algorithm is necessary in quality control system based on visual sensing. Aiming at the image captured by a coaxial visual sensing system for laser welding, an image processing algorithm is designed. An edge predicting method is proposed in image processing algorithm which is based on the fact that the local shape of weld pool can be fitted to a circle. The results show that the algorithm works well. It lays solid foundation for further quality control in laser welding.
文摘The dynamic behaviors of the keyhole and weld pool are coupled together in plasma arc welding, and the geometric variations of both the keyhole and the weld pool determine the weld quality. It is of great significance to simultaneously sense and monitor the keyhole and the weld pool behaviors by using a single low-cost vision sensor in plasma arc welding process. In this study, the keyhole and weld pool were observed and measured under different levels of welding current by using the near infrared sensing technology and the charge coupled device (CCD) sensing system. The shapes and relative position of weld pool and keyhole under different conditions were compared and analyzed. The observation results lay solid foundation for controlling weld quality and understanding the underlying process mechanisms.
文摘A mathematical model was established to simulate the weld pool development and dynamic process in stationary iaser-MlG hybrid welding. Surface tension and buoyancy were considered to calculate liquid metal flow patter, moreover, typical phenomena of MIG welding, such as filler droplets impinging weld pool, electromagnetic force in the weld pool, and typical phenomena of laser beam welding, such as recoil pressure, Inverse Bremsstrahlung absorption, Fresnel absorption were all considered in the model. The laser beam and arc couple effect were introduced into this model by the plasma width during hybrid welding. The role of recoil pressure in the weld formation was discussed. Transient weld pool shape and complicated liquid metal velocity distribution from two kinds weld pool to an unified weld pool were calculated. The simulated weld bead geometry with consideration recoil pressure was in good agreement with experimental measurement.
基金The authors are grateful to the financial support for this research from the National Natural Science Foundation of China ( Key Pro- gram Grant No. 50936003 ).
文摘Numerical analysis of weld pool shape and size is of great significance for selection and optimization of the process parameters in pulsed current plasma arc welding (PAW). In this paper, a mathematical model and relevant algorithm are developed to determine the temperature profiles and weld pool geometry in pulsed current PAW through employing an adaptive heat source model. The volumetric heat source consists of semi-ellipsoid at upper part and a conic body at lower part along the workpiece thickness direction. The dynamic variation features of weld pool shape during a pulse cycle are numerically simulated. The calculated weld cross-section is consistent with the measure one.
文摘This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the structure of single ended inverter with two switches, and takes IGBTs as power switches. The working frequency of the inverter is set at 20 kHz. The control circuit takes PWM circuit as center, and uses single chip computer to complete the manage functions such as the control of working sequence, setting and changing of the welding parameters, sensing of the welding states and communication with outside computer etc. The dynamic reacting time of the whole power is 1 ms, the range of the output current is 5~250 A, the precision of the output current reaches to 1 A. The power strikes arc by contacting workpiece under 5 A, and have convenient interface with system computer. All above shows this power source is one with high performance.
基金The research work was surpported by the National Natural Science Foundation of China.
文摘A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China
基金Fund projects: National Natural Science Foundation of China( No 51075214)funding.
文摘In order to discover characteristics of various kinds of weld pool image and identify a single image, seven image features are extracted to describe the corresponding surface formation quality by the moment iavariants method. An image feature matrix is composed by the seven characteristics. Then the matrix is projected on a line through the Fisher criterion in order to entirely distinguish various kinds of image features. And finally, transforming a seven-dimensional problem into a one-dimensional problem has been done. Compared with the three kinds of samples included in the arc welding process and quality weld pool visual image database, the images are classified into the three kinds such as superior weld formation in the condition of optimal gas flow, poor weld formation image in the condition of insuffwient gas flow, inferior weld formation in the condition of too low gas flow. Experiments show that the Fisher classification method based on moment invariants can recognize various weld pool images effectively, and it achieves a correct recognizable rate of 100%.
文摘A sensing system is developed to measure the weld pool boundary and pool suoface deformation in gas tungsten arc welding. LaserStrobe technique is used to eliminate the strong arc light inteoference, and specular reflection from the pool suoface is sensed to describe the relation between the deformed stripes and pool surface depression. Clear images of both the pool boundary and the deformed stripes edges are obtained during gas tungsten arc welding process, which lays foundation for realtime monitoring the pool suoface depression and weld penetration.