期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Local melting mechanism and its effects on mechanical properties of friction spot welded joint for Al-Zn-Mg-Cu alloy 被引量:5
1
作者 Yunqiang Zhao Chungui Wang +2 位作者 Jizhong Li Jinhong Tan Chunlin Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期185-191,共7页
Local melting and the eutectic film and liquation crack formation mechanisms during friction spot weld- ing (FSpW) of Al-Zn-Mg-Cu alloy were studied by both experiment and finite element simulation. Their effects on... Local melting and the eutectic film and liquation crack formation mechanisms during friction spot weld- ing (FSpW) of Al-Zn-Mg-Cu alloy were studied by both experiment and finite element simulation. Their effects on mechanical properties of the joint were examined. When the welding heat input was high, the peak temperature in the stir zone was higher than the incipient melting temperature of the Al-Zn-Mg-Cu alloy. This resulted in local melting along the grain boundaries in this zone. In the retreating stage of the welding process, the formed liquid phase was driven by the flowing plastic material and redistributed as a "U-shaped" line in the stir zone. In the following cooling stage, this liquid phase transformed into eutectic films and liquation cracks. As a result, a new characteristic of"U" line that consisted of eutectic films and liquation cracks is formed in the FSpWjoin. This "U" line was located in the high stress region when the FSpW joint was loaded, thus it was adverse to the mechanical properties of the FSpW joint. During tensile shear tests, the "U" line became a preferred crack propagation path, resulting in the occurrence of brittle fracture. 展开更多
关键词 Friction spot welding Numerical simulation Local melting Liquation crack Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部