期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Residual stress and welding distortion of Al/steel butt joint by arc-assisted laser welding-brazing 被引量:11
1
作者 Chun-ling LI Ding FAN +1 位作者 Xiao-quan YU Jian-kang HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第4期692-700,共9页
The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material ... The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material nonlinearity,geometrical nonlinearity and work hardening on the welding process is studied,and the differences in the welding temperature field,residual stress and welding distortion by A-LWB and by single laser welding-brazing(SLWB)are analyzed.The results show that the thermal cycle,residual stress distribution and welding distortion by the numerical simulation are in good agreement with the measured data by experiments,which verifies the effectiveness of FEM.Compared with the SLWB,A-LWB can make the high-temperature distribution zone of weld in width direction wider,decrease the transverse tensile stress in the weld and reduce the distribution range of longitudinal tensile stress.And the welding deformation also decreases to some extent. 展开更多
关键词 arc-assisted laser welding-brazing(A-LWB) Al/steel finite element method(FEM) temperature field residual stress welding distortion
下载PDF
Effect of auxiliary TIG arc on formation and microstructures of aluminum alloy/stainless steel joints made by MIG welding-brazing process 被引量:7
2
作者 张洪涛 刘积厚 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2831-2838,共8页
A new hybrid welding process was successfully used to join aluminum alloy and stainless steel. In the MIG welding-brazing process, the lower thermal conductivity of steel can cause dramatic change of temperature gradi... A new hybrid welding process was successfully used to join aluminum alloy and stainless steel. In the MIG welding-brazing process, the lower thermal conductivity of steel can cause dramatic change of temperature gradient on steel surface, while the auxiliary TIG arc can change this phenomenon by heating the steel side. The auxiliary TIG improved the wettability of molten metal, resulting in the molten metal spreading fully on upper surfaces, front and back surface of steel, forming a sound brazing joint; the content of Cr and Ni elements in IMCs layer was increased, which can enhance the quality of the layer; and the microstructure of IMCs layer also was improved, increasing the bonding strength with the weld seam. The average tensile strength of the joint obtained with auxiliary TIG arc(146.7 MPa) was higher than that without auxiliary TIG arc(96.7 MPa). 展开更多
关键词 welding-brazing auxiliary TIG arc WETTABILITY intermetallics layer mechanical property
下载PDF
Wettability, microstructure and properties of 6061 aluminum alloy/304 stainless steel butt joint achieved by laser-metal inert-gas hybrid welding-brazing 被引量:7
3
作者 Jun-yu XUE Yuan-xing LI +1 位作者 Hui CHEN Zong-tao ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第10期1938-1946,共9页
Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent join... Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent joint-section shape was achieved from good wettability on both sides of the stainless steel.Scanning electron microscopy,energy-dispersive spectroscopy and X-ray diffractometry indicated an intermetallic compound(IMC)layer at the 6061-T6/304 interface.The IMC thickness was controlled to be^2μm,which was attributed to the advantage of the laser-MIG hybrid method.Fe3Al dominated in the IMC layer at the interface between the stainless steel and the back reinforcement.The IMC layer in the remaining regions consisted mainly of Fe4Al13.A thinner IMC layer and better wettability on both sides of the stainless steel were obtained,because of the optimized energy distribution from a combination of a laser beam with a MIG arc.The average tensile strength of the joint with reinforcement using laser-MIG hybrid process was improved to be 174 MPa(60%of the 6061-T6 tensile strength),which was significantly higher than that of the joint by traditional MIG process. 展开更多
关键词 welding-brazing laser-metal inert-gas hybrid welding butt joint microstructure
下载PDF
Effect of welding parameters on Al/Ti joint property in electron beam welding-brazing 被引量:8
4
作者 Wang Yarong Yu Yang Teng Wenhua 《China Welding》 EI CAS 2016年第4期27-33,共7页
The electron beam welding-brazing being used to join 5A06 Al alloy to TC4 Ti alloy decreases the formation of brittle intermetallic compound.Experiments were carried out to study the influence of electron beam welding... The electron beam welding-brazing being used to join 5A06 Al alloy to TC4 Ti alloy decreases the formation of brittle intermetallic compound.Experiments were carried out to study the influence of electron beam welding parameters on the tensile strength of welds,based on an orthogonal test and analysis method.The welding parameters include beam current,welding speed,scanning figure,scanning frequency,figure size,beam offset and focus current.The optimum parameters for3 mm 5A06 Al alloy and 2 mm TC4 alloy were as follows:acceleration voltage was 60 kV,beam current was 11 mA,welding speed was 600 mm/min,focus current was 0 mA,scan figure was O,scanning frequency was 1 000 Hz and beam offset was 0.5 mm.The results show that the joints were with good appearance and quality welded by the optimum parameters.The successful joints could be gained and the maximum tensile strength of Al/Ti dissimilar alloy joints could be up to 222.61 MPa using electron beam welding-brazing. 展开更多
关键词 Al alloy Ti alloy electron beam welding-brazing orthogonal test and analysis
下载PDF
Effects of Ni on microstructure and properties of aluminum- stainless steel TIG welding-brazing joint with AI-Si filler 被引量:3
5
作者 何欢 林三宝 +2 位作者 杨春利 范成磊 陈哲 《China Welding》 EI CAS 2012年第4期1-7,共7页
Effects of Ni on microstructure and properties of aluminum-stainless steel TIG welding-brazing joint with Al-Si filler were studied. Different mass percentage of Ni powder was added in the flux separately. Results of ... Effects of Ni on microstructure and properties of aluminum-stainless steel TIG welding-brazing joint with Al-Si filler were studied. Different mass percentage of Ni powder was added in the flux separately. Results of tensile tests show that a significant improvement on mechanical properties of the butt joint is obtained using the modified flux. Moreover, obvious differences on microstructures of the interfaces were observed with Ni addition, that two intermetallic compound (IMC) layers at the interface change to one layer and the IMC thickness also decreases. Finally, effect mechanism of Ni was analyzed and discussed. Ni addition leads to an enrichment of element Si at the brazing interface, and furthermore suppresses the formation of intermetaUic compound. The reduction of IMC thickness is the main reason for the improvement of joint properties. 展开更多
关键词 aluminum alloy stainless steel welding-brazing Nocolok NI INTERMETALLIC
下载PDF
Experimental study on dissimilar TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel 被引量:3
6
作者 林三宝 宋建岭 +2 位作者 杨春利 范成磊 张东卫 《China Welding》 EI CAS 2010年第1期26-31,共6页
Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructure... Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructures of the joint were analyzed and the average tensile strength of the joint was estimated. The results show that a sound dissimilar metals joint is obtained by TIG welding-brazing. Slag and residual flux on steel surface can be removed by sanding easily. The joint has dual characteristics: in aluminum alloy side, it is a welded joint, while in stainless steel side, it is a brazed joint. The whole interface layer, unequal in thickness at different position, ranges from 5 μm to 25 μm. The average tensile strength of the butt joint reaches 120 MPa and the fracture occurs at the interface layer. 展开更多
关键词 TIG welding-brazing aluminum alloy stainless steel microstructure tensile strength
下载PDF
TIG welding-brazing joint of aluminum to stainless steel with hot wire 被引量:1
7
作者 何欢 林三宝 +2 位作者 陈哲 范成磊 杨春利 《China Welding》 EI CAS 2013年第3期25-30,共6页
TIG welding-brazing process with high frequency induction hot wire technology was presented to create joints between 5A06 aluminum alloy and SUS32! stainless steel using ER1100 filler wire with different temperature. ... TIG welding-brazing process with high frequency induction hot wire technology was presented to create joints between 5A06 aluminum alloy and SUS32! stainless steel using ER1100 filler wire with different temperature. The joints were evaluated by mechanical test and microstructural analyses. The welding procedure using hot fiUer wire (400 ℃ ) significantly increases strength stability by 71% and average value of tensile strength by 30. 8 % of the joints, compared with cold wire. The research of microstructures in interfaces and welded seams reveals that using 400 ℃ hot filler wire can decrease the thickness of intermetallic compounds ( IMCs ) from 6 to 3.5 txm approximately, which is the main reason of mechanical property improvement. 展开更多
关键词 aluminum alloy stainless steel welding-brazing hot wire high frequency induction INTERMETALLIC
下载PDF
Analysis on interfacial layer of aluminum alloy and non-coated stainless steel joint made by TIG welding-brazing 被引量:1
8
作者 宋建岭 林三宝 +2 位作者 杨春利 马广超 王寅杰 《China Welding》 EI CAS 2009年第2期1-5,共5页
Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (... Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (IMCs) in the interracial layer by optical metalloscope (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer ( EDS) , and the cracked joint was analyzed in order to understand the cracking mechanism of the joint. The results show that the microfusion of the stainless steel can improve the wetting and spreading of liquid aluminum base filler metal on the steel suuface and the melted steel accelerates the formation of mass of brittle IMCs in the interracial layer, which causes the joint cracking badly. The whole interfacial layer is 5 -7 μm thick and comprises approximately 5μm-thickness reaction layer in aluminum side and about 2 μm-thickness diffusion layer in steel side. The stable Al-rich IMCs are formed in the interfacial layer and the phases transfer from ( Al + FeAl3 ) in aluminum side to ( FeAl3 + Fe2Al5 ) and ( α-Fe + FeAl) in steel side. 展开更多
关键词 aluminum alloy stainless steel TIG welding-brazing interfacial layer intermetallic compound
下载PDF
Fabrication and analysis of TIG welding-brazing butt joints of in-situ TiB2/7050 composite and TA2
9
作者 Huan-huan Sun Yi-bo Ren +4 位作者 Yang Feng Hao-qiang Ba Dong Chen Chun-juan Xia Hao-wei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期1062-1070,共9页
Lightweight hybrid structures of Al MMCs and titanium alloy dissimilar materials have great prospect in the defence industry application. So, it is necessary to join Al MMCs with Ti metal to achieve this structural de... Lightweight hybrid structures of Al MMCs and titanium alloy dissimilar materials have great prospect in the defence industry application. So, it is necessary to join Al MMCs with Ti metal to achieve this structural design. In this work, in-situ Ti B_(2)/7050 composite and TA2 were firstly attempted to join by TIG welding-brazing technique. The result was that the intact welding-brazing butt joint was successfully fabricated. The joint presents dual characteristics, being a brazing on TA2 side and a welding on Ti B_(2)/7050 side. At brazing joint side, ER4043 filler metal effectively wets on TA2 under TIG heating condition,and a continuous interfacial reaction layer with 1 e3 mm is formed at welded metal/TA2 interface. The whole interfacial reaction layers are composed of Ti(Al Si)3 intermetallic compounds(IMCs), but their morphologies at the different regions present obvious distinguishes. The microhardness of the reaction layers is as much as 141 e190 HV. At welding joints side, the fusion zone appears the equixaed crystal structure, and the grain sizes are much smaller than those of welded metal, which is attributed to the effect of Ti B2 particulates from the melted Ti B_(2)/7050 on acceleration formation and inhibiting growth for the new crystal nucleus. The tensile test results show that average tensile strength of the optimal welding-brazing joint is able to achieve 138 MPa. The failure of the tensile joint occurs by quasi-cleavage pattern, and the cracks initiate from the IMCs layer at the groove surface of TA2 and propagate into the welded metal. 展开更多
关键词 In-situ TiB2/7050 composite TA2 TIG welding-brazing FABRICATION Analysis
下载PDF
Pulsed TIG welding-brazing butt joints of aluminum-stainless steel thin plates with different fillers
10
作者 何欢 范成磊 +2 位作者 林三宝 杨春利 张玉岐 《China Welding》 EI CAS 2014年第1期59-63,共5页
Aluminum and stainless steel plates with 1.5 mm thickness are joined by pulsed TIG welding-brazing process with ER1100, ER4043 and ER2319 fillers, separately. Good weld formation can be obtained by adjusting appropria... Aluminum and stainless steel plates with 1.5 mm thickness are joined by pulsed TIG welding-brazing process with ER1100, ER4043 and ER2319 fillers, separately. Good weld formation can be obtained by adjusting appropriate pulse parameters. The effects of the fillers on that the thickness of the intermetallic compound ( IMC ) and tensile strength of the joints are investigated. SEM results indicate layer with ER2319 filler is about 2 ~m, which is thinner than 2. 5 p^m of ER1100 filler and 3.5 txm of ER4043 filler. Moreover, the element distribution in both IMCs and welded seams with three fillers are different because of the different compositions of fillers. The results of mechanical property tests suggest that the joint strength with ER2319 filler is the highest, while the joint impact energy is the lowest. The joint with ERllOO filler exhibits the best comprehensive mechanical pet.formanee. 展开更多
关键词 pulse welding-brazing ALUMINUM stainless steel FILLER
下载PDF
The effect of zinc coating during joining aluminium to zinc-coated steel by welding-brazing process
11
作者 张洪涛 冯吉才 +1 位作者 韩超 刘积厚 《China Welding》 EI CAS 2012年第4期55-58,共4页
An optical sensing system was constructed to study the coating when joining ahtminium alloy to zinc-coated steel by MIG welding-brazing process. The results showed that the coating fused to form a liquid zinc film on ... An optical sensing system was constructed to study the coating when joining ahtminium alloy to zinc-coated steel by MIG welding-brazing process. The results showed that the coating fused to form a liquid zinc film on surface during process. The Al-Si filler metal reacted with the liquid zinc film to improve the spreadability of filler metal and thus a new method was established to join aluminium alloy and uncoated steel by depositing a mixed layer on steel surface. 展开更多
关键词 welding-brazing liquid zinc film dissimilar metals joining aluminium alloy STEEL
下载PDF
Microstructure and mechanical properties of dissimilar joint between aluminum and aluminum-coated steel by cold metal transfer process
12
作者 田春英 周智远 +4 位作者 王军 廖平 李海涛 庄明辉 杨文杰 《China Welding》 EI CAS 2015年第3期73-80,共8页
Two dissimilar materials, aluminum alloy and aluminum-coated steel, were joined by cold metal transfer process using AlSi5 filler wire. To this end, the steel was coated with Al-Si. The steel did not melt and aluminum... Two dissimilar materials, aluminum alloy and aluminum-coated steel, were joined by cold metal transfer process using AlSi5 filler wire. To this end, the steel was coated with Al-Si. The steel did not melt and aluminum was melt to form the joint during the process, it was actually cold metal transfer welding-brazing. The macrostructure, microstructure, alloy element distribution, and inter-metallic compounds were analyzed by optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. It was found that the Al-Si coating dissolved into the weld metal. The pre-existing thin Fe-Al- Si ternary inter-metallic compounds in the interface between the Ak-Si coating layer and base metal steel also partially dissolved into the weld zone, tending to reduce the thickness of inter-metallic compounds. Approximate 3 μm thick undissolved intermetallic compound was found at the interface after welding which could guarantee sound bonding strength in dissimilar materials joining. The sample was fractured at the fusion zone near the aluminum side in the tensile test. The ultimate tensile strength was about 156 MPa, and the fracture mode is ductile failure in nature according to its morphology. 展开更多
关键词 cold metal transfer welding-brazing ALUMINUM aluminum-coated steel
下载PDF
Tungsten Inert Gas Welding–Brazing of AZ31B Magnesium Alloy to TC4 Titanium Alloy 被引量:11
13
作者 Chuan Xu Guangmin Sheng +2 位作者 Hui Wang Ke Feng Xinjian Yuan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第2期167-171,共5页
Tungsten inert gas (TIG) welding-brazing technology using Mg-based filler was developed to join AZ31 B Mg alloy to TC4 Ti alloy in a lap configuration. The results indicate that robust joints can be obtained with we... Tungsten inert gas (TIG) welding-brazing technology using Mg-based filler was developed to join AZ31 B Mg alloy to TC4 Ti alloy in a lap configuration. The results indicate that robust joints can be obtained with welding current in the range of 60-70 A. The joint interface was found to be likely composed of Mg-Ti diffusion reaction layer accompanied with Mg17Al12 precipitate phase, indicating that metallurgical joining was achieved. The optimized joint with average tensile-shear strength of 190 N/mm^2 was obtained and fracture occurred at the Ti/fusion zone interracial layer during tensile test. Moreover. the fracture surface was characterized by equiaxed dimple patterns accompanied with a few lamellar tearing. Finally, finite element modeling (FEM) numerical simulation was developed to analyze the distribution characteristics of the temperature field of joints. 展开更多
关键词 TIG welding-brazing Magnesium alloy Titanium alloy Microstructure Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部