As the research of knowledge graph(KG)is deepened and widely used,knowledge graph com-pletion(KGC)has attracted more and more attentions from researchers,especially in scenarios of in-telligent search,social networks ...As the research of knowledge graph(KG)is deepened and widely used,knowledge graph com-pletion(KGC)has attracted more and more attentions from researchers,especially in scenarios of in-telligent search,social networks and deep question and answer(Q&A).Current research mainly fo-cuses on the completion of static knowledge graphs,and the temporal information in temporal knowl-edge graphs(TKGs)is ignored.However,the temporal information is definitely very helpful for the completion.Note that existing researches on temporal knowledge graph completion are difficult to process temporal information and to integrate entities,relations and time well.In this work,a rotation and scaling(RotatS)model is proposed,which learns rotation and scaling transformations from head entity embedding to tail entity embedding in 3D spaces to capture the information of time and rela-tions in the temporal knowledge graph.The performance of the proposed RotatS model have been evaluated by comparison with several baselines under similar experimental conditions and space com-plexity on four typical knowl good graph completion datasets publicly available online.The study shows that RotatS can achieve good results in terms of prediction accuracy.展开更多
It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the bous...It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. .展开更多
In this paper, we introduce the definition of (m, n)0-regularity in Г-semigroups. we in- vestigate and characterize the 20-regular class of F-semigroups using Green's relations. Extending and generalizing the Croi...In this paper, we introduce the definition of (m, n)0-regularity in Г-semigroups. we in- vestigate and characterize the 20-regular class of F-semigroups using Green's relations. Extending and generalizing the Croisot's Theory of Decomposition for F-semigroups, we introduce and study the absorbent and regular absorbent Г-semigroups. We approach this problem by examining quasi-ideals using Green's relations.展开更多
基金the National Natural Science Foundation of China(No.6187022153).
文摘As the research of knowledge graph(KG)is deepened and widely used,knowledge graph com-pletion(KGC)has attracted more and more attentions from researchers,especially in scenarios of in-telligent search,social networks and deep question and answer(Q&A).Current research mainly fo-cuses on the completion of static knowledge graphs,and the temporal information in temporal knowl-edge graphs(TKGs)is ignored.However,the temporal information is definitely very helpful for the completion.Note that existing researches on temporal knowledge graph completion are difficult to process temporal information and to integrate entities,relations and time well.In this work,a rotation and scaling(RotatS)model is proposed,which learns rotation and scaling transformations from head entity embedding to tail entity embedding in 3D spaces to capture the information of time and rela-tions in the temporal knowledge graph.The performance of the proposed RotatS model have been evaluated by comparison with several baselines under similar experimental conditions and space com-plexity on four typical knowl good graph completion datasets publicly available online.The study shows that RotatS can achieve good results in terms of prediction accuracy.
文摘It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. .
文摘In this paper, we introduce the definition of (m, n)0-regularity in Г-semigroups. we in- vestigate and characterize the 20-regular class of F-semigroups using Green's relations. Extending and generalizing the Croisot's Theory of Decomposition for F-semigroups, we introduce and study the absorbent and regular absorbent Г-semigroups. We approach this problem by examining quasi-ideals using Green's relations.