In order to avoid mistakes and to save a great deal of time in analysis, an innovative methodology was developed that can analyze the well operations and rig characteristics involved to define the best emergency disco...In order to avoid mistakes and to save a great deal of time in analysis, an innovative methodology was developed that can analyze the well operations and rig characteristics involved to define the best emergency disconnect sequence (EDS) available. A solution was developed based on the characteristics of the rigs and blowout preventers (BOPs), and six variables were considered that directly affect the choice of EDS. All possible combinations of 64 scenarios were analyzed, and the priority of choice of the EDS was defined empirically. This paper presents an approach to EDS risk management and examples of exposure time (time without riser safety margin and shear capability) for the same well, which can be lowered from 13% to 0.1%. The impact of this reduction is related to the ability of the BOP to cut some of the heavy casings, in addition to improved availability of EDS modes. This implementation opened up many possibilities for the performance of risk exposure analysis, enabling comparison of several BOP configurations of contracted rigs and selection of the best options. This innovative approach allowed a better management of the rig schedules, prioritizing safety aspects and making it possible to allocate the fleet in a systematic way.展开更多
Based on the tectonic genesis and seismic data of fault-controlled fractured-vuggy reservoirs,the typical fractured-vuggy structure features were analyzed.A 3D large-scale visual physical model of“tree-like”fracture...Based on the tectonic genesis and seismic data of fault-controlled fractured-vuggy reservoirs,the typical fractured-vuggy structure features were analyzed.A 3D large-scale visual physical model of“tree-like”fractured-vuggy structure was designed and made.The experiments of bottom-water flooding and multi-media synergistic oil displacement after bottom-water flooding were conducted with different production rates and different well-reservoir configuration relationships.The formation mechanisms and distribution rules of residual oil during bottom-water flooding under such fractured-vuggy structure were revealed.The producing characteristics of residual oil under different production methods after bottom-water flooding were discovered.The results show that the remaining oil in"tree-like"fractured-vuggy structure after bottom-water flooding mainly include the remaining oil of non-well controlled fault zones and the attic remaining oil at the top of well controlled fault zones.There exists obvious water channeling of bottom-water along the fault at high production rate,but intermittent drainage can effectively weaken the interference effect between fault zones to inhibit water channeling.Compared with the vertical well,horizontal well can reduce the difference in flow conductivity between fault zones and show better resistance to water channeling.The closer the horizontal well locates to the upper part of the“canopy”,the higher the oil recovery is at the bottom-water flooding stage.However,comprehensive consideration of the bottom-water flooding and subsequent gas injection development,the total recovery is higher when the horizontal well locates in the middle part of the“canopy”and drills through a large number of fault zones.After bottom water flooding,the effect of gas huff and puff is better than that of gas flooding,and the effect of gas huff and puff with large slug is better than that of small slug.Because such development method can effectively develop the remaining oil of non-well controlled fault zones and the attic remaining oil at the top of well controlled fault zones transversely connected with oil wells,thus greatly improving the oil recovery.展开更多
基金the support of Intelie Soucoes em Informáica LTDA
文摘In order to avoid mistakes and to save a great deal of time in analysis, an innovative methodology was developed that can analyze the well operations and rig characteristics involved to define the best emergency disconnect sequence (EDS) available. A solution was developed based on the characteristics of the rigs and blowout preventers (BOPs), and six variables were considered that directly affect the choice of EDS. All possible combinations of 64 scenarios were analyzed, and the priority of choice of the EDS was defined empirically. This paper presents an approach to EDS risk management and examples of exposure time (time without riser safety margin and shear capability) for the same well, which can be lowered from 13% to 0.1%. The impact of this reduction is related to the ability of the BOP to cut some of the heavy casings, in addition to improved availability of EDS modes. This implementation opened up many possibilities for the performance of risk exposure analysis, enabling comparison of several BOP configurations of contracted rigs and selection of the best options. This innovative approach allowed a better management of the rig schedules, prioritizing safety aspects and making it possible to allocate the fleet in a systematic way.
基金Supported by the National Natural Science Foundation of China(52074344)。
文摘Based on the tectonic genesis and seismic data of fault-controlled fractured-vuggy reservoirs,the typical fractured-vuggy structure features were analyzed.A 3D large-scale visual physical model of“tree-like”fractured-vuggy structure was designed and made.The experiments of bottom-water flooding and multi-media synergistic oil displacement after bottom-water flooding were conducted with different production rates and different well-reservoir configuration relationships.The formation mechanisms and distribution rules of residual oil during bottom-water flooding under such fractured-vuggy structure were revealed.The producing characteristics of residual oil under different production methods after bottom-water flooding were discovered.The results show that the remaining oil in"tree-like"fractured-vuggy structure after bottom-water flooding mainly include the remaining oil of non-well controlled fault zones and the attic remaining oil at the top of well controlled fault zones.There exists obvious water channeling of bottom-water along the fault at high production rate,but intermittent drainage can effectively weaken the interference effect between fault zones to inhibit water channeling.Compared with the vertical well,horizontal well can reduce the difference in flow conductivity between fault zones and show better resistance to water channeling.The closer the horizontal well locates to the upper part of the“canopy”,the higher the oil recovery is at the bottom-water flooding stage.However,comprehensive consideration of the bottom-water flooding and subsequent gas injection development,the total recovery is higher when the horizontal well locates in the middle part of the“canopy”and drills through a large number of fault zones.After bottom water flooding,the effect of gas huff and puff is better than that of gas flooding,and the effect of gas huff and puff with large slug is better than that of small slug.Because such development method can effectively develop the remaining oil of non-well controlled fault zones and the attic remaining oil at the top of well controlled fault zones transversely connected with oil wells,thus greatly improving the oil recovery.