Based on a new idea for research on cycling of marine biogenic elements, this study showed that only the leachable form phosphorus in natural grain sizes marine sediments constitutes the transferable phosphorous in th...Based on a new idea for research on cycling of marine biogenic elements, this study showed that only the leachable form phosphorus in natural grain sizes marine sediments constitutes the transferable phosphorous in the sediments. The transferable phosphorus content in the natural grain sizes surface sediments in the Huanghe River estuary adjacent waters ranges from 58.5-69.8 μg/g, accounting for only 9.1%-11.0% of the total phosphorus content, whereas the leachable form (“transferable") phosphorus content in the sediment after it was totally ground into powder was found to be 454.8-529.2 μg/g, accounting for 73.4%-89.1% of the total phosphorus. Analysis of the correlation between the biomass of benthos and the leachable form (“transferable") phosphorus showed that most of the leachable form (“transferable") phosphorus in the totally ground sediment did not participate in the marine biogeochemical cycling. Furthermore, a synchronous survey on benthos showed that the biomass of meio and macro benthos exhibited good positive correlation with the leachable form of phosphorus in the natural grain sizes sediment, but poorer correlation with the leachable form (“transferable") phosphorus in the totally ground sediment, indicating that transferable phosphorus in marine sediment is the leachable form of phosphorus in the natural grain sizes sediments, and is not the previously known leachable form (“transferable") phosphorus obtained from the totally ground sediment.展开更多
Water quality is critical to ensure that marine resources and the environment are utilized in a sustainable manner. The objective of this study is therefore to investigate the optimum placement of marine environmental...Water quality is critical to ensure that marine resources and the environment are utilized in a sustainable manner. The objective of this study is therefore to investigate the optimum placement of marine environmental monitoring sites to monitor water quality in Shanghai, China. To improve the mapping or estimation accuracy of the areas with different water quality grades, the monitoring sites were fixed in transition bands between areas of different grades rather than in other positions. Following bidirectional optimization method, first, 18 candidate sites were selected by filtering out specific site categories. Second, three of these were, in turn, eliminated because of the rule defined by the changes in the areas of water quality grades and by the standard deviation of the interpolation errors of dissolved inorganic nitrogen(DIN) and phosphate(PO_4-P). Furthermore, indicator kriging was employed to depict the transition bands between different water quality grades whenever new sampling sites were added. The four optimization projects of the newly added sites reveal that, all optimized sites were distributed in the transition bands of different water grades, and at the same time in the areas where the historical sites were sparsely distributed. New sites were also found in the overlap region of different transition bands. Additional sites were especially required in these regions to discriminate the boundaries of different water quality grades. Using the bidirectional optimization method of the monitoring sites, the boundaries of different water quality grades could be determined with a higher precision. As a result, the interpolation errors of DIN and PO_4-P could theoretically decrease.展开更多
基金Project 49776300 supported by NSFC49925614 by the NSFC for Outstanding Young Scientists.
文摘Based on a new idea for research on cycling of marine biogenic elements, this study showed that only the leachable form phosphorus in natural grain sizes marine sediments constitutes the transferable phosphorous in the sediments. The transferable phosphorus content in the natural grain sizes surface sediments in the Huanghe River estuary adjacent waters ranges from 58.5-69.8 μg/g, accounting for only 9.1%-11.0% of the total phosphorus content, whereas the leachable form (“transferable") phosphorus content in the sediment after it was totally ground into powder was found to be 454.8-529.2 μg/g, accounting for 73.4%-89.1% of the total phosphorus. Analysis of the correlation between the biomass of benthos and the leachable form (“transferable") phosphorus showed that most of the leachable form (“transferable") phosphorus in the totally ground sediment did not participate in the marine biogeochemical cycling. Furthermore, a synchronous survey on benthos showed that the biomass of meio and macro benthos exhibited good positive correlation with the leachable form of phosphorus in the natural grain sizes sediment, but poorer correlation with the leachable form (“transferable") phosphorus in the totally ground sediment, indicating that transferable phosphorus in marine sediment is the leachable form of phosphorus in the natural grain sizes sediments, and is not the previously known leachable form (“transferable") phosphorus obtained from the totally ground sediment.
基金supported by the National Natural Science Foundation of China(Nos.41376190,41531179,41421001 and 41601425)the Scientific Research Project of Shanghai Marine Bureau(No.Hu Hai Ke2016-05)the Ocean Public Welfare Scientific Research Project,State Oceanic Administration of the People’s Republic of China(Nos.201505008 and 201305027)
文摘Water quality is critical to ensure that marine resources and the environment are utilized in a sustainable manner. The objective of this study is therefore to investigate the optimum placement of marine environmental monitoring sites to monitor water quality in Shanghai, China. To improve the mapping or estimation accuracy of the areas with different water quality grades, the monitoring sites were fixed in transition bands between areas of different grades rather than in other positions. Following bidirectional optimization method, first, 18 candidate sites were selected by filtering out specific site categories. Second, three of these were, in turn, eliminated because of the rule defined by the changes in the areas of water quality grades and by the standard deviation of the interpolation errors of dissolved inorganic nitrogen(DIN) and phosphate(PO_4-P). Furthermore, indicator kriging was employed to depict the transition bands between different water quality grades whenever new sampling sites were added. The four optimization projects of the newly added sites reveal that, all optimized sites were distributed in the transition bands of different water grades, and at the same time in the areas where the historical sites were sparsely distributed. New sites were also found in the overlap region of different transition bands. Additional sites were especially required in these regions to discriminate the boundaries of different water quality grades. Using the bidirectional optimization method of the monitoring sites, the boundaries of different water quality grades could be determined with a higher precision. As a result, the interpolation errors of DIN and PO_4-P could theoretically decrease.