期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Geochemistry of Pyrite from the Gangcha Gold Deposit, West Qinling Orogen, China: Implications for Ore Genesis 被引量:5
1
作者 NIE Xiao SHEN Junfeng +5 位作者 LIU Haiming DU Baisong WANG Shuhao LI Jie XU Liwei WANG Ran 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第6期2164-2179,共16页
The Gangcha gold deposit was discovered in 2011 in the Xiahe-Hezuo region, West Qinling Orogen, China. Five types of pyrite have been identified in the ore according to the detailed mineral paragenetic studies. Geoche... The Gangcha gold deposit was discovered in 2011 in the Xiahe-Hezuo region, West Qinling Orogen, China. Five types of pyrite have been identified in the ore according to the detailed mineral paragenetic studies. Geochemical data are presented for type I pyrite (pyl) rim-core zonation and for the different types of pyrite based on in-situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and electron probe microanalysis (EPMA). The results show that pyrites are characterized with heterogeneous Au concentrations, which indicate that Au occurs mainly as micro- or nano-particle native inclusions. Time-resolved depth profiles demonstrate that As, Co and Ni occur as solid solutions in pyrite, whereas Cu, Pb, Zn and Ag occur mainly as inclusions. Trace element concentrations differ between rims and cores in pyl, and the differences also exist within different pyrite types. These differences indicate complex chemical evolution of the ore-forming fluids, and the overall geology, geochronology, and stable isotope and pyrite data suggest that the ore-forming fluids were closely linked to magmatic activity during the Triassic Period in West Qinling orogenic belt. 展开更多
关键词 PYRITE GEOCHEMISTRY Gangcha gold deposit west qinling Qrogen
下载PDF
Genesis of the Changba–Lijiagou Giant Pb-Zn Deposit, West Qinling, Central China: Constraints from S-Pb-C-O isotopes 被引量:4
2
作者 WEI Ran WANG Yitian +6 位作者 MAO Jingwen HU Qiaoqing QIN Siting LIU Shengyou YE Dejin YUAN Qunhu DOU Ping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第4期884-900,共17页
The extensive Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe–Chengxian ore cluster in West Qinling. The ore bodies are mainly hosted in the marble, dolomitic marble and biotite-calcite-quartz schi... The extensive Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe–Chengxian ore cluster in West Qinling. The ore bodies are mainly hosted in the marble, dolomitic marble and biotite-calcite-quartz schist of the Middle Devonian Anjiacha Formation, and are structurally controlled by the fault and anticline. The ore-forming process can be divided into three main stages, based on field geological features and mineral assemblages. The mineral assemblages of hydrothermal stage I are pale-yellow coarse grain, low Fe sphalerite, pyrite with pits, barite and biotite. The mineral assemblages of hydrothermal stage II are black-brown cryptocrystalline, high Fe shalerite, pyrite without pits, marcasite or arsenopyrite replace the pyrite with pits, K-feldspar. The features of hydrothermal stage III are calcite-quartz-sulfide vein cutting the laminated, banded ore body. Forty-two sulfur isotope analyses, twenty-five lead isotope analyses and nineteen carbon and oxygen isotope analyses were determined on sphalerite, pyrite, galena and calcite. The δ34 S values of stage I(20.3 to 29.0‰) are consistent with the δ34 S of sulfate(barite) in the stratum. Combined with geological feature, inclusion characteristics and EPMA data, we propose that TSR has played a key role in the formation of the sulfides in stage I. The δ34 S values of stage II sphalerite and pyrite(15.1 to 23.0‰) are between sulfides in the host rock, magmatic sulfur and the sulfate(barite) in the stratum. This result suggests that multiple S reservoirs were the sources for S2-in stage II. The δ34 S values of stage III(13.1 to 22‰) combined with the structure of the geological and mineral features suggest a magmatic hydrothermal origin of the mineralization. The lead isotope compositions of the sulfides have 206 Pb/204 Pb ranging from 17.9480 to 17.9782, 207 Pb/204 Pb ranging from 15.611 to 15.622, and 208 Pb/204 Pb ranging from 38.1368 to 38.1691 in the three ore-forming stages. The narrow and symmetric distributions of the lead isotope values reflect homogenization of granite and mantle sources before the Pb-Zn mineralization. The δ13 CPDB and δ18 OSMOW values of stage I range from-0.1 to 2.4‰ and from 18.8 to 21.7‰. The values and inclusion data indicate that the source of fluids in stage I was the dissolution of marine carbonate. The δ13 CPDB and δ18 OSMOW values of stage II range from-4 to 1‰ and from 12.3 to 20.3‰, suggesting multiple C-O reservoirs in the Changba deposit and the addition of mantle-source fluid to the system. The values in stage III are-3.1‰ and 19.7‰, respectively. We infer that the process of mineralization involved evaporitic salt and sedimentary organic-bearing units interacting through thermochemical sulfate reduction through the isotopic, mineralogy and inclusion evidences. Subsequently, the geology feature, mineral assemblages, EPMA data and isotopic values support the conclusion that the ore-forming hydrothermal fluids were mixed with magmatic hydrothermal fluids and forming the massive dark sphalerite, then yielding the calcite-quartz-sulfide vein ore type at the last stage. The genesis of this ore deposit was epigenetic rather than the previously-proposed sedimentary-exhalative(SEDEX) type. 展开更多
关键词 S-Pb isotopes C-O isotopes Pb-Zn deposit ore genesis epigenetic hydrothermal Changba–Lijiagou west qinling
下载PDF
Geochemistry, Geochronology and Lu-Hf Isotopes of Peraluminous Granitic Porphyry from the Walegen Au Deposit, West Qinling Terrane 被引量:3
3
作者 GUO Xianqing YAN Zhen +2 位作者 Jonathan C.AITCHISON FU Changlei WANG Zongqi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第6期2024-2040,共17页
Walegen Au deposit is closely correlated with granitic intrusions of Triassic age, which are composed of granite and quartz porphyries. Both granite porphyry and quartz porphyry consist of quartz, feldspar and muscovi... Walegen Au deposit is closely correlated with granitic intrusions of Triassic age, which are composed of granite and quartz porphyries. Both granite porphyry and quartz porphyry consist of quartz, feldspar and muscovite as primary minerals. WeaMy peraluminous granite porphyry (A/ CNK=1.10-1.15) is enriched in LREE, depleted in HREE with Nb-Ta-Ti anomalies, and displays subduction-related geochemistry. Quartz porphyry is strongly peraluminous (A/CNK=1.64-2.81) with highly evolved components, characterized by lower TiO2, REE contents, Mg#, K/Rb, Nb/Ta, Zr/Hf ratios and higher Rb/Sr ratios than the granite porphyry. REE patterns of quartz porphyry exhibit lanthanide tetrad effect, resulting from mineral fractionation or participation of fluids with enriched F and CI. LA- ICP-MS zircon U-Pb dating indicates quartz porphyry formed at 233±3 Ma. The ages of relict zircons from Triassic magmatic rocks match well with the detrital zircons from regional area. In addition, εHf(t) values of Triassic magmatic zircons from the granite and quartz porphyries are -14.2 to -9.1 (with an exception of +4.1) and -10.8 to -8.6 respectively, indicating a crustal-dominant source. Regionally, numerous Middle Triassic granitoids were previously reported to be formed under the consumption of Paleotethyan Ocean. These facts indicate that the granitic porphyries from Walegen Au deposit may have been formed in the processes of the closing of Paleotethyan Ocean, which could correlate with the arc-related magmatism in the Kunlun orogen to the west and the Qinling orogen to the east. 展开更多
关键词 Triassic granites lanthanide tetrad effect subduction-related magmatism Walegen Au deposit west qinling terrane
下载PDF
Source and possible tectonic driver for Jurassic-Cretaceous gold deposits in the West Qinling Orogen, China 被引量:2
4
作者 Yafei Wu Jianwei Li +2 位作者 Katy Evans Denis Fougerouse Kirsten Rempel 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第1期107-117,共11页
The West Qinling Orogen(WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits(>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Tria... The West Qinling Orogen(WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits(>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Triassic to Early Jurassic(T3 - J1) and one only recently identified in the Late Jurassic to Early Cretaceous(J3 - K1). Few studies have focused on the origin and geotectonic setting of the J3 - K1 gold deposits.Textural relationships, LA-ICP-MS trace element and sulfur isotope compositions of pyrites in hydrothermally altered T3 dykes within the J3 - K1 Daqiao deposit were used to constrain relative timing relationships between mineralization and pyrite growth in the dykes, and to characterize the source of ore fluid. These results are integrated with an overview of the regional geodynamic setting, to advance understanding of the tectonic driver for J3 - K1 hydrothermal gold systems. Pyrite in breccia-and dykehosted gold ores at Daqiao have similar chemical and isotopic compositions and are considered to be representative of J3 - K1 gold deposits in WQO. Co/Ni and sulfur isotope ratios suggest that ore fluids were derived from underlying Paleozoic Ni-and Se-rich carbonaceous sedimentary rocks. The geochemical data do not support the involvement of magmatic fluids. However, in the EQO(East Qinling Orogen), J3 - K1 deposits are genetically related to magmatism. Gold mineralization in WQO is contemporaneous with magmatic deposits in the EQO and both are mainly controlled by NE-and EWtrending structures produced by changes in plate motion of the Paleo-Pacific plate as it was subducted beneath the Eurasian continent. We therefore infer that the J3 - K1 structural regime facilitated the ascent of magma in the EQO and metamorphic fluids in the WQO with consequent differences in the character of contemporaneous ore deposits. If this is correct, then the far-field effects of subduction along the eastern margin of NE Asia extended 1000's of km into the continental interior. 展开更多
关键词 Pyrite LA-ICP-MS Sulfur isotopes Daqiao gold deposit west qinling Orogen Paleo-Pacific plate Jurassice Cretaceous
下载PDF
Geology, Pb Isotope Geochemistry and Ore Genesis of the Liziyuan Gold Deposit, West Qinling Orogen, Central China 被引量:1
5
作者 DING Lele ZHU Laimin +3 位作者 YUAN Honglin LU Rukui XIONG Xiao YANG Tao 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第3期1082-1099,共18页
The Liziyuan gold deposit, situated on the south side of the Shangdan suture zone, West Qinling Orogen, occurs in metamorphic volcanic rocks(greenschist facies) of the early Paleozoic Liziyuan Group and in Indosinian ... The Liziyuan gold deposit, situated on the south side of the Shangdan suture zone, West Qinling Orogen, occurs in metamorphic volcanic rocks(greenschist facies) of the early Paleozoic Liziyuan Group and in Indosinian Tianzishan monzogranite. Orebodies in the Liziyuan gold field are controlled by the ductile-brittle shear zone, and by thrusting nappe faults related to the Indosinian orogeny. In detail, this paper analyzed the geological characteristics of the Liziyuan gold field, and the Pb isotopes of the Lziyuan host rocks, granitoids(Tianzishan monzogranite and Jiancaowan syenite porphyry), sulfides, and auriferous quartz veins by multiple-collector inductively coupled plasma mass spectrometry(MC-ICPMS). In addition, previous data on the sulfur, hydrogen, and oxygen isotopes were employed to discuss the possible sources of the ore-forming fluids and materials, and to further understand the tectonic setting of the Liziyuan gold deposit. The sulfides and their host rocks(Lziyuan Group), Tianzishan monzogranite and Jiancaowan syenite porphyry, and auriferous quartz veins have similar Pb isotopic compositions.Zartman’s plumbotectonic model diagram shows that most of the data for the deposit fall near the orogenic Pb evolutionary curve or within the area between the orogenic and mantle Pb evolutionary curves. In the△β-△γ diagram, which genetically classifies the lead isotopes, most of the data fall within the range of the subduction-zone lead mixed with upper crust and mantle. This indicates that a complex source of the ore lead formed in the orogenic environment. The δ34S values of the sulfides range from 3.90 to 8.50‰(average6.80‰), with a pronounced mode at 5.00‰-8.00‰. These values are consistent with that of orogenic gold deposits worldwide, indicating that the sulfur sourced mainly from reduced metamorphic fluids. The isotopic hydrogen and oxygen compositions support a predominantly metamorphic origin of the oreforming fluids, with possible mixing of minor magmatic fluids, but the late stage was dominated by meteoric water. The characteristics of the Liziyuan gold deposit formed in the Indosinian orogenic environment of the Qinling Orogen are consistent with those of orogenic gold deposits found worldwide. 展开更多
关键词 Pb isotope ore genesis Liziyuan gold deposit orogenic gold deposit west qinling Orogen China
下载PDF
Direct Re–Os dating of pyrite from the Jianchaling Au deposit,West Qinling,China 被引量:1
6
作者 Suwei Yue Xiaohua Deng Zhenwen Lin 《Acta Geochimica》 EI CAS CSCD 2022年第2期275-287,共13页
The West Qingling Orogen is endowed with more than 1100 t gold resources and with 50 gold deposits,ranking it the third-largest gold province in China.The Jianchaling giant gold deposit with 52 t gold reserve is a typ... The West Qingling Orogen is endowed with more than 1100 t gold resources and with 50 gold deposits,ranking it the third-largest gold province in China.The Jianchaling giant gold deposit with 52 t gold reserve is a typical orogenic gold deposit in West Qinling Orogen.The deposit lacks accurate and direct metallogenic age.Five pyrite samples collected from the quartz-polymetallic veins yielded Re–Os isochron age of 206.3±2.7 Ma and an initial187 Os/188 Os ratio of 0.1154±0.0016(MSWD=0.54).The pyrites were analyzed by the electron microprobe(EMPA),and the results show that the iron content ranges from 45.1 to 47.8 wt.%,the sulfur content ranges from 52.0 to 53.5 wt.%,and the gold content varies from0.022 to 0.035%.The higher gold content means that gold is closely related to pyrite,which is a gold-bearing mineral.Moreover,the age is very close to the previous fuchsite40 Ar/39 Ar isotopic ages of 199–194 Ma,which indicates that the gold mineralization at Jianchaling has begun in the Late Triassic(206 Ma),and continued into the Early Jurassic.Through summary and comparison,it is found that the gold metallogenic age of the southern ore belt of the Mian-Lue Suture belt in the West Qinling is younger than that of the northern ore belt,suggesting that the gold deposits in the southern ore belt such as Jianchaling were formed in the transitional period from oceanic subduction to continental collision. 展开更多
关键词 Jianchaling Pyrite Re-Os west qinling Orogenic gold deposit
下载PDF
Vegetation Coverage Changes in the West Qinling Region from 2000 to 2010:A Case Study of Longnan City
7
作者 Ming FANG Qiuqiu LI +1 位作者 Chuansheng WANG Meng LI 《Asian Agricultural Research》 2016年第8期81-85,90,共6页
As the main content of terrestrial ecosystem study,vegetation coverage change has gained extensive attention in the process of global climate change and sustainable development recently.Based on MODIS NDVI data from J... As the main content of terrestrial ecosystem study,vegetation coverage change has gained extensive attention in the process of global climate change and sustainable development recently.Based on MODIS NDVI data from June to October during 2000-2010,taking Longnan City as a case area,this paper develops the calculation method of vegetation coverage(VC) by using Pixel Dichotomy model and analyzes the spatial-temporal variation of vegetation coverage in the West Qinling region by using simple linear regression and standard deviation method.The results show that vegetation coverage remains stable and is significantly correlated with temperature and precipitation during the decade.The vegetation coverage of 90% of study area shows stability with small annual variation and also is consistent with the spatial distribution of forest land;the vegetation coverage in the remaining study areas shows a growing trend with significant variation and also is consistent with the spatial distribution of farmland and grassland,especially in Huicheng Basin,Xili Basin and adret slope of Bailongjiang River Valley,indicating that Project about the Conversion of Degraded Farmland into Forest has made a great contribution to vegetation coverage increase.This paper proves the effect of ecology construction in the West Qinling region since the late 20 th century.All the findings also provide references for local ecological environment construction and sustainable development. 展开更多
关键词 Vegetation coverage Spatial and temporal change west qinling Region
下载PDF
An Early Cretaceous gold mineralization event in the Triassic West Qinling orogen revealed from U-Pb titanite dating of the Ma'anqiao gold deposit
8
作者 Chongguo HE Jianwei LI +9 位作者 Daniel J.KONTAK Xiaoye JIN Yafei WU Hao HU Bo ZU Xueling YU Shaorui ZHAO Shiguang DU Yunlong ZHU Huan TAO 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第2期316-333,共18页
The West Qinling orogen in central China,formed from continental collision between the North China and Yangtze cratons in the Late Triassic,hosts numerous gold deposits with a total Au endowment of about 2000 t.Most d... The West Qinling orogen in central China,formed from continental collision between the North China and Yangtze cratons in the Late Triassic,hosts numerous gold deposits with a total Au endowment of about 2000 t.Most deposits were emplaced at ca.250-195 Ma and are genetically associated with the Triassic orogenesis.Here in situ U-Pb titanite dating with laser ablation inductively coupled plasma mass spectrometry indicates the Ma’anqiao gold deposit in the northern portion of this orogen has a distinctive age and under a contrasting tectonic regime.This structurally controlled gold deposit is hosted in Late Ordovician to Early Silurian sub-greenschist facies metasedimentary rocks.The gold mineralization is hosted in quartz-pyritepyrrhotite veins and pyrite-pyrrhotite disseminations in hydrothermally altered rocks,which are crosscut by K-feldspar-calcitechlorite±pyrite veins.Titanite,present both in the disseminated sulfide ores and later veins,was used for in situ U-Pb dating.Titanite from three disseminated sulfide ore samples with Th and U averaging 27.46 and 39.31 ppm(1 ppm=1μg g^(-1)),respectively,yielded lower-intercept ages of 121.1±3.1 to 120.7±3.5 Ma(2σ)in the Tera-Wasserburg diagram.Titanite from three later vein samples with much lower Th and U concentrations averaging 2.74 and 16.21 ppm,respectively,yielded overlapping ages of 120.8±3.2 to 120.3±5.8 Ma(2σ).These new titanite U-Pb ages tightly constrain the formation of the Ma’anqiao gold deposit at ca.121-120 Ma and,when combined with independent geological data,indicate it is not related to the Triassic Qinling orogeny.Rather,its formation is attributed to lithospheric thinning and destruction of the North China craton during the Late Jurassic to Early Cretaceous which has generated numerous gold deposits along the southern margin of this craton.This catastrophic event caused extensive magmatism in large areas of the North Qinling terrane and northern edge of the West Qinling orogen immediately to the south of the North China craton.The heat flux and elevated geothermal gradients associated with this magmatism could have induced prograde metamorphism of the Paleozoic sedimentary infrastructure in and beneath these areas with the derived fluids ascending along pre-existing crustal-scale regional structures to form the Ma’anqiao gold deposit.We suggest that areas in the North Qinling terrane that have been affected by the Late Mesozoic magmatism are potential targets for future exploration of the decratonization-related gold deposits.Additionally,this study highlights the use of titanite U-Pb dating as a robust geochronometer for metasedimentary rock-hosted gold deposits in Phanerozoic orogens,which has previously not been utilized. 展开更多
关键词 Titanite U-Pb dating Early Cretaceous Orogenic gold deposit Ma’anqiao west qinling orogen
原文传递
The quantitative classification of granites and their metallogenetic relations in West Qinling,Gansu Province,China 被引量:1
9
作者 Yuxi Wang Xiaowei Wang +2 位作者 Jianmin Luo Yu Zhang Jun Wang 《Big Earth Data》 EI 2019年第1期56-66,共11页
The quantitative classification of granite and their metallogenetic relations have never been discussed.The Q-system clustering analysis and discriminant analysis methods were alternately used to quantitatively analyz... The quantitative classification of granite and their metallogenetic relations have never been discussed.The Q-system clustering analysis and discriminant analysis methods were alternately used to quantitatively analyze the 11 oxide data in granite samples from the West Qinling area of Gansu Province,and then to construct the quantitative classification series models of granite(oxide).The granites samples are divided into three categories and eight subcategories.The classification of granites is biased toward prospecting.According to the spatial correlation between eight types of granites and copper deposits,lead and zinc deposits,gold deposits,etc.(within 3 km of the intrusion)in the West Qinling area in Gansu Province,the“metallogenic related intrusions”are sought,and the prospecting target areas are defined.Furthermore,they provide reliable basis for regional geological prospecting. 展开更多
关键词 GRANITE quantitative classification the metallogenic intrusions metallogenic spatial relationship west qinling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部