期刊文献+
共找到194篇文章
< 1 2 10 >
每页显示 20 50 100
Seasonal Prediction of the Record-Breaking Northward Shift of the Western Pacific Subtropical High in July 2021 被引量:4
1
作者 Shuai HU Tianjun ZHOU +1 位作者 Bo WU Xiaolong CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期410-427,共18页
The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captu... The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captured by seasonal predictions,a skillful prediction of the WPSH variation might have warned us of the increased probability of extreme weather events in Central and Northern China.However,the mechanism for the WPSH variation in July 2021 and its seasonal predictability are still unknown.Here,the observed northward shift of the WPSH in July 2021 is shown to correspond to a meridional dipole pattern of the 850-hPa geopotential height to the east of China,the amplitude of which became the strongest since 1979.The meridional dipole pattern is two nodes of the Pacific–Japan pattern.To investigate the predictability of the WPSH variation,a 21-member ensemble of seasonal predictions initiated from the end of June 2021 was conducted.The predictable and unpredictable components of the meridional dipole pattern were identified from the ensemble simulations.Its predictable component is driven by positive precipitation anomalies over the tropical western Pacific.The positive precipitation anomalies are caused by positive horizonal advection of the mean moist enthalpy by southwesterly anomalies to the northwestern flank of anticyclonic anomalies excited by the existing La Niña,which is skillfully predicted by the model.The leading mode of the unpredictable component is associated with the atmospheric internal intraseasonal oscillations,which are not initialized in the simulations.The relative contributions of the predictable and unpredictable components to the observed northward shift of the WPSH at 850 hPa are 28.0%and 72.0%,respectively. 展开更多
关键词 western pacific subtropical high seasonal prediction seasonal predictability La Niña pacific-Japan pattern
下载PDF
The combined effects of North Atlantic Oscillation and Western Pacific teleconnection on winter temperature in Eastern Asia during 1980−2021
2
作者 Ziqun Zhang Hongyan Cui +2 位作者 Baoxu Chen Hong Cai Pin Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期1-9,共9页
As important atmospheric circulation patterns in Northern Hemisphere(NH),the North Atlantic Oscillation(NAO)and the Western Pacific teleconnection(WP)affect the winter climate in Eurasia.In order to explore the combin... As important atmospheric circulation patterns in Northern Hemisphere(NH),the North Atlantic Oscillation(NAO)and the Western Pacific teleconnection(WP)affect the winter climate in Eurasia.In order to explore the combined effects of NAO and WP on East Asian(EA)temperature,the NAO and WP indices are divided into four phases from 1980−2021:the positive NAO and WP phase(NAO+/WP+),the negative NAO and WP phase(NAO−/WP−),the positive NAO and negative WP phase(NAO+/WP−),the negative NAO and positive WP phase(NAO−/WP+).In the phase of NAO+/WP+,the low geopotential height(GH)stays in north of EA at 50°−80°N;the surface air temperature anomaly(SATA)is 0.8−1℃lower than Southern Asian.In the phase of NAO−/WP−,the center of high temperature and GH locate in the northeast of EA;the cold air spreads to Southern Asia,causing the SATA decreases 1−1.5℃.In the phase of NAO+/WP−,the high GH belt is formed at 55°−80°N.Meanwhile,the center of high SATA locates in the north of Asia that increases 0.8−1.1℃.The cold airflow causes temperature dropping 0.5−1℃in the south of EA.The SATA improves 0.5−1.5℃in south of EA in the phase of NAO−/WP+.The belt of high GH is formed at 25°−50°N,and blocks the cold air which from Siberia.The NAO and WP generate two warped plate pressure structures in NH,and affect the temperature by different pressure configurations.NAO and WP form different GH,and GH acts to block and push airflow by affecting the air pressure,then causes the temperature to be different from the north and south of EA.Finally,the multiple linear regression result shows that NAO and WP are weakened by each other such as the phase of NAO+/WP+and NAO−/WP−. 展开更多
关键词 North Atlantic Oscillation(NAO) western pacific teleconnection(WP) winter temperature combined effect Eastern Asia
下载PDF
Interdecadal Enhancement in the Relationship between the Western North Pacific Summer Monsoon and Sea Surface Temperature in the Tropical Central-Western Pacific after the Early 1990s
3
作者 Kui LIU Lian-Tong ZHOU +1 位作者 Zhibiao WANG Yong LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1766-1782,共17页
This study reveals the strengthened interdecadal relationship between the western North Pacific summer monsoon(WNPSM)and tropical central-western Pacific sea surface temperature anomaly(SSTA)in summer after the early ... This study reveals the strengthened interdecadal relationship between the western North Pacific summer monsoon(WNPSM)and tropical central-western Pacific sea surface temperature anomaly(SSTA)in summer after the early 1990s.In the first period(1979–91,P1),the WNPSM-related precipitation anomaly and horizontal wind anomaly present themselves as an analogous Pacific-Japan(PJ)-like pattern,generally considered to be related to the Niño-3 index in the preceding winter.During the subsequent period(1994–2019,P2),the WNPSM-related precipitation anomaly presents a zonal dipole pattern,correlated significantly with the concurrent SSTA in the Niño-4 and tropical western Pacific regions.The negative(positive)SSTA in the tropical western Pacific and positive(negative)SSTA in the Niño-4 region,could work together to influence the WNPSM,noting that the two types of anomalous SSTA configurations enhance(weaken)the WNPSM by the positive(negative)phase PJ-like wave and Gill response,respectively,with an anomalous cyclone(anticyclone)located in the WNPSM,which shows obvious symmetry about the anomalous circulation.Specifically,the SSTA in Niño-4 impacts the WNPSM by an atmospheric Gill response,with a stronger(weaker)WNPSM along with a positive(negative)SSTA in the Niño-4 region.Furthermore,the SSTA in the tropical western Pacific exerts an influence on the WNPSM by a PJ-like wave,with a stronger(weaker)WNPSM along with a negative(positive)SSTA in the tropical western Pacific.In general,SSTAs in the tropical western Pacific and Niño-4 areas could work together to exert influence on the WNPSM,with the effect most likely to occur in the El Niño(La Niña)developing year in P2.However,the SSTAs in the tropical western Pacific worked alone to exert an influence on the WNPSM mainly in 2013,2014,2016,and 2017,and the SSTAs in the Niño-4 region worked alone to exert an influence on the WNPSM mainly in Central Pacific(CP)La Niña developing years.The sensitivity experiments also can reproduce the PJ-like wave/Gill response associated with SSTA in the tropical western Pacific/Niño-4 regions.Therefore,the respective and synergistic impacts from the Niño-4 region and the tropical western Pacific on the WNPSM have been revealed,which helps us to acquire a better understanding of the interdecadal variations of the WNPSM and its associated climate influences. 展开更多
关键词 western North pacific summer monsoon tropical central-western pacific SST interdecadal change
下载PDF
Indo-Western Pacific Ocean Capacitor and Coherent Climate Anomalies in Post-ENSO Summer: A Review 被引量:82
4
作者 Shang-Ping XIE Yu KOSAKA +3 位作者 Yan DU Kaiming HU Jasti S.CHOWDARY Gang HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第4期411-432,共22页
ENSO induces coherent climate anomalies over the Indo-western Pacific, but these anomalies outlast SST anomalies of the equatorial Pacific by a season, with major effects on the Asian summer monsoon. This review provi... ENSO induces coherent climate anomalies over the Indo-western Pacific, but these anomalies outlast SST anomalies of the equatorial Pacific by a season, with major effects on the Asian summer monsoon. This review provides historical accounts of major milestones and synthesizes recent advances in the endeavor to understand summer variability over the Indo-Northwest Pacific region. Specifically, a large-scale anomalous anticyclone (AAC) is a recurrent pattern in post-E1 Nifio summers, spanning the tropical Northwest Pacific and North Indian oceans. Regarding the ocean memory that anchors the summer AAC, competing hypotheses emphasize either SST cooling in the easterly trade wind regime of the Northwest Pacific or SST warming in the westerly monsoon regime of the North Indian Ocean. Our synthesis reveals a coupled ocean- atmosphere mode that builds on both mechanisms in a two-stage evolution. In spring, when the northeast trades prevail, the AAC and Northwest Pacific cooling are coupled via wind-evaporation-SST feedback. The Northwest Pacific cooling persists to trigger a summer feedback that arises from the interaction of the AAC and North Indian Ocean warming, enabled by the westerly monsoon wind regime. This Indo-western Pacific ocean capacitor (IPOC) effect explains why E1 Nifio stages its last act over the monsoonal Indo-Northwest Pacific and casts the Indian Ocean warming and AAC in leading roles. The IPOC displays interdecadal modulations by the ENSO variance cycle, significantly correlated with ENSO at the turn of the 20th century and after the 1970s, but not in between. Outstanding issues, including future climate projections, are also discussed. 展开更多
关键词 Indian Ocean western pacific ocean-atmosphere interaction ENSO Asian monsoon
下载PDF
The Impact of Atmospheric Heat Sources over the Eastern Tibetan Plateau and the Tropical Western Pacific on the Summer Rainfall over the Yangtze-River Basin 被引量:16
5
作者 简茂球 乔云亭 +1 位作者 袁卓建 罗会邦 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第1期149-155,共7页
The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in Chin... The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in China. Compared with mode variance friction, the mode station variance percentage not only reveals more localized characteristics of the variability of the summer rainfall, but also helps to distinguish the regions with a high degree of dominant EOF modes representing the analyzed observational variable. The atmospheric circulation diagnostic studies with the NCEP/NCAR reanalysis daily data from 1966 to 2000 show that in summer, abundant (scarce) rainfall in the belt-area from the upper-middle reaches of the Yangtze River northeastward to the Huaihe River basin is linked to strong (weak) heat sources over the eastern Tibetan Plateau, while the abundant (scarce) rainfall in the area to the south of the middle-lower reaches of the Yangtze River is closely linked to the weak (strong) heat sources over the tropical western Pacific. 展开更多
关键词 heat sources eastern Tibetan Plateau tropical western pacific summer rainfall Yangtze River basin
下载PDF
Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land–Air–Sea Interaction Perspective 被引量:16
6
作者 Anmin DUAN Ruizao SUN Jinhai HE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期157-168,共12页
The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th... The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework. 展开更多
关键词 Tibetan Plateau surface sensible heating western pacific subtropical high ENSO tropical air-sea interaction
下载PDF
Impact of the Thermal State of the Tropical Western Pacific on Onset Date and Process of the South China Sea Summer Monsoon 被引量:19
7
作者 黄荣辉 顾雷 +1 位作者 周连童 吴尚森 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第6期909-924,共16页
Since the early or late onset of the South China Sea summer monsoon (SCSM) has a large impact on summer monsoon rainfall in East Asia, the mechanism and process of early or late onset of the SCSM are an worthy issue... Since the early or late onset of the South China Sea summer monsoon (SCSM) has a large impact on summer monsoon rainfall in East Asia, the mechanism and process of early or late onset of the SCSM are an worthy issue to study. In this paper, the results analyzed by using the observed data show that the onset date and process of the SCSM are closely associated with the thermal state of the tropical western Pacific in spring. When the tropical western Pacific is in a warming state in spring, the western Pacific subtropical high shifts eastward, and twin cyclones are early caused over the Bay of Bengal and Sumatra before the SCSM onset. In this case, the cyclonic circulation located over the Bay of Bengal can be early intensified and become into a strong trough. Thus, the westerly flow and convective activity can be intensified over Sumatra, the Indo-China Peninsula and the South China Sea (SCS) in mid-May. This leads to early onset of the SCSM. In contrast, when the tropical western Pacific is in a cooling state, the western Pacific subtropical high anomalously shifts westward, the twin cyclones located over the equatorial eastern Indian Ocean and Sumatra are weakened, and the twin anomaly anticyclones appear over these regions from late April to mid-May. Thus, the westerly flow and convective activity cannot be early intensified over the Indo-China Peninsula and the SCS. Only when the western Pacific subtropical high moves eastward, the weak trough located over the Bay of Bengal can be intensified and become into a strong trough, the strong southwesterly wind and convective activity can be intensified over the Indo-China Peninsula and the SCS in late May. Thus, this leads to late onset of the SCSM. Moreover, in this paper, the influencing mechanism of the thermal state of the tropical western Pacific on the SCSM onset is discussed further from the Walker circulation anomalies in the different thermal states of the tropical western Pacific. 展开更多
关键词 the tropical western pacific the South China Sea summer monsoon convective activity theWalker circulation
下载PDF
30-60-day Oscillations of Convection and Circulation Associated with the Thermal State of the Western Pacific Warm Pool during Boreal Summer 被引量:13
8
作者 任保华 黄荣辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第5期781-793,共13页
This study focuses on the characteristics of the 30 60-day oscillation (MJO) associated with the interannual variability of the thermal state in the western Pacific warm pool. The composite results show that, the ampl... This study focuses on the characteristics of the 30 60-day oscillation (MJO) associated with the interannual variability of the thermal state in the western Pacific warm pool. The composite results show that, the amplitude of MJO convection over the tropical western Pacific tends to intensify (reduce) in the WARM (COLD) case. The negative correlations between MJO convection in the WARM and in the COLD cases are examined to be significant over most of the Asian-Pacific region. The evolutions of MJO convection and lower circulation, on the one hand, exhibit larger differences between the WARM and COLD cases, but on the other hand, display a unique feature in that a well-developed MJO cyclone (anticyclone) is anchored over the Asian-Western Pacific domain at the peak enhanced (suppressed) MJO convection phase over the western Pacific warm pool, either in the WARM or in the COLD case. This unique feature of MJO shows a Gill-type response of lower circulation to the convection and is inferred to be an inherent appearance of MJO. The context in the paper suggests there may exist interactions between MJO and the interannual variability of the thermal state in the western Pacific warm pool. 展开更多
关键词 30 60-day oscillation western pacific warm pool thermal states CONVECTION CIRCULATION
下载PDF
Anomalous Western Pacific Subtropical High during Late Summer in Weak La Nia Years: Contrast between 1981 and 2013 被引量:10
9
作者 Feng XUE Fangxing FAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第12期1351-1360,共10页
Both 1981 and 2013 were weak La Nifia years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the westem Pacific subtropical high (WPSH) during August exhibited an opposite anomaly ... Both 1981 and 2013 were weak La Nifia years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the westem Pacific subtropical high (WPSH) during August exhibited an opposite anomaly in the two years. A comparison indicates that, in the absence of a strong SST anomaly in the tropics, the cold advection from Eurasian high latitudes and the convection of the western Pacific warm pool play important roles in influencing the strength and position of the WPSH in August. In August 1981, the spatial pattern of 500 hPa geopotential height was characterized by a meridional circulation with a strong ridge in the Ural Mountains and a deep trough in Siberia, which provided favorable conditions for cold air invading into the lower latitudes. Accordingly, the geopotential height to the north of the WPSH was reduced by the cold advection anomaly from high latitudes, resulting in an eastward retreat of the WPSH. Moreover, an anomalous cyclonic circulation in the subtropical western Pacific, excited by enhanced warm pool convection, also contributed to the eastward retreat of the WPSH. By contrast, the influence from high latitudes was relatively weak in August 2013 due to a zonal circulation pattern over Eurasia, and the anomalous anticyclonic circulation induced by suppressed warm pool convection also facilitated the westward extension of the WPSH. Therefore, the combined effects of the high latitude and tropical circulations may contribute a persistent anomaly of the WPSH in late summer, despite the tropical SST anomaly being weak. 展开更多
关键词 western pacific subtropical high late summer tropical circulation high latitude circulation warm pool convection
下载PDF
Distribution Characteristics of Cobalt-rich Ferromanganese Crust Resources on Submarine Seamounts in the Western Pacific 被引量:6
10
作者 ZHANG Fuyuan ZHANG Weiyan +4 位作者 ZHU Kechao GAO Shuitu ZHANG Haisheng ZHANG Xiaoyu ZHU Benduo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第4期796-803,共8页
Based on the survey data of five submarine seamount provinces (chains) in the Western Pacific, the distribution characteristics of cobalt-rich ferromanganese crust resources have been researched in this paper by usi... Based on the survey data of five submarine seamount provinces (chains) in the Western Pacific, the distribution characteristics of cobalt-rich ferromanganese crust resources have been researched in this paper by using the relative reference data and applying the theories of hotspot and seafloor spreading. The main research results obtained are as follows: The Co-rich crust thickness in the study area is gradually increasing from east to west and from south to north having a negative correlation (r = -0.59) with longitude and a positive correlation (r = 0.48) with latitude. The crust thickness varying along longitude and latitude is influenced by the hotspot and seafloor spreading. The oceanic crusts and seamounts in the northwest part of the study area are older, and the crust resources are superior to those in the southeast part. In the depth of 〈1500 m, 1500-2000 m, 2000-2500 m in the study area, the cobalt crust thickness is respectively 5.45 cm, 4.34 cm and 3.55 cm, and in the depth of 2500-3000 m and 3000-3500 m, it drops respectively to 2.84 cm and 3.37 cm. The Co-rich crust resources are mainly concentrated in the seamount summit margins and the upper flanks in the depth of 〈2500 m. There is a strong negative correlation (r = -0.67) between the cobalt crust abundance and the slope of the seamount, 75 kg/m^2 and 50 kg/mz at the slopes of 0°-20° and 20°-34° respectively. Cobalt crusts are mainly distributed in the parts whose slopes are less than 20°. It is consistent with the fractal result that the slope threshold of cobalt crust distribution is 19°, and slopes over 20° are not conducive to the crust growth. The cobalt crusts of high grade are mainly enriched in the region within 150°E-140°W and 30°S-30°N in the Pacific, where there are about 587 seamounts at the depth of 3500- 6000 m and over 30 Ma of the oceanic crusts. The perspective area rich in cobalt crust resources is about 41×104 km^2 and the resource quantity is approximately 27 billion tons. 展开更多
关键词 western pacific SEAMOUNTS Co-rich crusts RESOURCES distribution characteristics
下载PDF
Interdecadal change in Western Pacific Subtropical High and climatic effects 被引量:8
11
作者 HE Xue-zhao1, GONG Dao-yi1,2 (1. Laboratory of Environmental Change and Natural Disaster Research, Institute of Resources Science, Beijing Normal University, Beijing 100875, China 2. School of Earth and Environmental Sciences, Seoul National University 《Journal of Geographical Sciences》 SCIE CSCD 2002年第2期79-86,共8页
Western North Pacific Subtropical High is a very important atmospheric circulation system influencing the summer climate over eastern China. Its interdecadal change is analyzed in this study. There is a significant de... Western North Pacific Subtropical High is a very important atmospheric circulation system influencing the summer climate over eastern China. Its interdecadal change is analyzed in this study. There is a significant decadal shift in about 1979/1980. Since 1980, the Western North Pacific Subtropical High has enlarged, intensified, and shifted southwestward. This change gives rise to an anti-cyclonic circulation anomaly over the region from the South China Sea to western Pacific and thus causes wet anomalies over the Yangtze River valley. During the summers of 1980-1999, the precipitation is 63.9 mm above normal, while during 1958-1979 it is 27.3 mm below normal. The difference is significant at the 99% confidence level as a t-test shown. The southwestward expanding of the Western North Pacific Subtropical High also leads to a significant warming in southern China, during 1980-1999 the summer mean temperature is 0.37篊 warmer than that of the period 1958-1979. The strong warming is primarily due to the clearer skies associated with the stronger downward air motion as the Western North Pacific Subtropical High expanding to the west and controlling southern China. It is also found that the relative percentage of tropical cyclones in the regions south of 20篘 is decreasing since the 1980s, but in the regions north of 20篘 that is increasing at the same time. The Western North Pacific Subtropical High responds significantly to sea surface temperature of the tropical eastern Pacific with a lag of one-two seasons and simultaneously to sea surface temperature of the tropical Indian Ocean. The changes in the sea surface temperatures are mainly responsible for the interdecadal variability of the Western North Pacific Subtropical High. 展开更多
关键词 western pacific Subtropical High interdecadal change climate change
下载PDF
Anomalous Western Pacific Subtropical High during El Nino Developing Summer in Comparison with Decaying Summer 被引量:6
12
作者 Feng XUE Xiao DONG Fangxing FAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第3期360-367,共8页
The anomalous behavior of the western Pacific subtropical high (WPSH) in E1 Nifio developing summer is studied based on the composite results of eight major E1 Nifio events during 1979-2013. It is shown that the WPS... The anomalous behavior of the western Pacific subtropical high (WPSH) in E1 Nifio developing summer is studied based on the composite results of eight major E1 Nifio events during 1979-2013. It is shown that the WPSH tends to retreat eastwards with weak intensity during the developing summer. The anomaly exhibits an intraseasonal variation with a weaker anomaly in June and July and a stronger anomaly in August, indicating that different underlying physical mechanisms may be responsible for the anomalous WPSH during early and late summer periods. In June and July, owing to the cold advection anomaly characterized as a weak northerly anomaly from high latitudes, geopotential height in East Asia is reduced and the WPSH tends to retreat eastwards slightly. By contrast, enhanced convection over the warm pool in August makes the atmosphere more sensitive to E1 Nifio forcing. Consequently, a cyclonic anomaly in the western Pacific is induced, which is consistent with the seasonal march of atmospheric circulation from July to August. Accordingly, geopotential height in the western Pacific is reduced significantly, and the WPSH tends to retreat eastwards remarkably in August. Different from the developing summer, geopotential height in the decaying summer over East Asia and the western Pacific tends to enhance and extend northwards from June to August consistently, reaching the maximum anomaly in August. Therefore, the seasonal march plays an important role in the WPSH anomaly for both the developing and decaying summer. 展开更多
关键词 western pacific subtropical high El Nifio developing summer decaying summer seasonal march
下载PDF
Seasonal variability in the thermohaline structure of the Western Pacific Warm Pool 被引量:4
13
作者 QIN Sisi ZHANG Qilong YIN Baoshu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第7期44-53,共10页
Using the 28℃ isotherm to define the Western Pacific Warm Pool (WPWP), this study analyzes the seasonal variability of the WPWP thermohaline structure on the basis of the monthly-averaged sea temperature and salini... Using the 28℃ isotherm to define the Western Pacific Warm Pool (WPWP), this study analyzes the seasonal variability of the WPWP thermohaline structure on the basis of the monthly-averaged sea temperature and salinity data from 1950 to 2011, and the dynamic and thermodynamic mechanisms based on the monthly-averaged wind, precipitation, net heat fluxes and current velocity data. A△T=-0.4℃ is more suitable than other temperature criterion for determining the mixed layer (ML) and barrier layer (BL) over the WPWP using monthly-averaged temperature and salinity data. The WPWP has a particular thermohaline structure and can be vertically divided into three layers, i.e., the ML, BL, and deep layer (DL). The BL thickness (BLT) is the thickest, while the ML thickness (MLT) is the thinnest. The MLT has a similar seasonal variation to the DL thickness (DLT) and BLT. They are all thicker in spring and fall but thinner in summer. The temperatures of the ML and BL are both higher in spring and autumn but lower in winter and summer with an annual amplitude of 0.15℃, while the temperature of the DL is higher in May and lower in August. The averaged salinities at these three layers are all higher in March but lower in September, with annual ranges of 0.41-0.45. Zonal currents, i.e., the South Equatorial Current (SEC) and North Equatorial Counter Current (NECC), and winds may be the main dynamic factors driving the seasonal variability in the WPWP thermohaline structure, while precipitation and net heat fluxes are both important thermodynamic factors. Higher (lower) winds cause both the MLT and BLT to thicken (thin), a stronger (weaker) NECC induces MLT, BLT, and DLT to thin (thicken), and a stronger (weaker) SEC causes both the MLT and BLT to thicken (thin) and the DLT to thin (thicken). An increase (decrease) in the net heat fluxes causes the MLT and BLT to thicken (thin) but the DLT to thin (thicken), while a stronger (weaker) precipitation favors thinner (thicker) MLT but thicker (thinner) BLT and DLT. In addition, a stronger (weaker) NECC and SEC cause the temperature of the three layers to decrease (increase), while the seasonal variability in salinity at the ML, BL, and DL might be controlled by the subtropical cell (STC). 展开更多
关键词 western pacific Warm Pool thermohaline structure barrier layer mixed layer seasonal variability
下载PDF
Noble Gas Isotopic Compositions of Cobalt-rich Ferromanganese Crusts from the Western Pacific Ocean and Their Geological Implications 被引量:5
14
作者 SUN Xiaoming XUE Ting +4 位作者 HE Gaowen YE Xianren ZHANG Mei LU Hongfeng WANG Shengwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第1期90-98,共9页
Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean we... Noble gas isotopic compositions of various layers in three-layered (outer, porous and compact layers) cobalt-rich ferromanganese crusts and their basaltic and phosphorite substrates from the western Pacific Ocean were analyzed by using a high vacuum gas mass spectrum. The analytical results show that the noble gases in the Co-rich crusts have derived mainly from the ambient seawater, extraterrestrial grains such as interplanetary dust particles (IDPs) and wind-borne continental dust grains, and locally formation water in the submarine sediments, but different noble gases have different sources. He in the crusts derives predominantly from the extraterrestrial grains, with a negligible amount of radiogenic He from the eolian dust grains. Ar is sourced mainly from the dissolved air in the seawater and insignificantly from radiogenic Ar in the eolian continental dust grains or the formation water. Xe and Ne derive mainly from the seawater, with minor amounts of extraterrestrial Xe and Ne in the IDPs. Compared with the porous and outer layers, the compact layer has a relatively high 4He content and lower 3He/4He ratios, suggesting that marine phosphatization might have greatly modified the noble gas isotopic compositions of the crusts. Besides, the 3He/4He values of the basaltic substrates of the cobalt-rich crusts are very low and their R/R. ratios are mostly 〈0.1 R., which are similar to that of phosphorite substrates (0.087 R.), but much lower than that of fresh submarine MORB (8.75±14 Ra) or seamount basalts (3-43 Ra), implying that the basaltic substrates have suffered strong water/rock interaction and reacted with radiogenic ^4He and P-rich upwelling marine currents during phosphatization. The trace elements released in the basalt/seawater interaction might favor the growth of cobalt-rich crusts. The relatively low ^3He/^4He values in the seamount basalts may be used as an important exploration criterion for the cobalt-rich ferromanganese crusts. 展开更多
关键词 noble gas isotopic composition interplanetary dust particles (IDPs) phosphatization cobalt-rich ferromanganese crusts western pacific Ocean
下载PDF
Spring Indian Ocean–Western Pacific SST Contrast and the East Asian Summer Rainfall Anomaly 被引量:4
15
作者 曹杰 陆日宇 +1 位作者 胡金明 王海 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第6期1560-1568,共9页
studying the relationship between SST in the tropical Indian Ocean (TIO), tropical western Pacific (TWP), and tropical eastern Pacific (TEP) and East Asian summer rainfall (EASR), using data provided by NOAA/O... studying the relationship between SST in the tropical Indian Ocean (TIO), tropical western Pacific (TWP), and tropical eastern Pacific (TEP) and East Asian summer rainfall (EASR), using data provided by NOAA/OAR/ESRL PSD and the National Climate Center of China for the period 1979-2008, an index, SSTDI, was defined to describe the SST difference between the TIO and TWP. In comparison with the winter ENSO, the spring SST contrast between the TIO and TWP was found to be more significantly associated with summer rainfall in East Asia, especially along the EASR band and in Northeast China. This spring SST contrast can persist into summer, resulting in a more significant meridional teleconnection pattern of lower-tropospheric circulation anomalies over the western North Pacific and East Asia. These circulation anomalies are dynamically consistent with the summer rainfall anomaly along the EASR band. When the SSTDI is higher (lower) than normal, the EASR over the Yangtze River valley, Korea, and central and southern Japan is heavier (less) than normal. The present results suggest that this spring SST contrast can be used as a new and better predictor of EASR anomalies. 展开更多
关键词 sea surface temperature contrast tropical Indian Ocean tropical western pacific East Asiansummer rainfall anomaly PREDICTOR
下载PDF
Possible Origins of the Western Pacific Warm Pool Decadal Variability 被引量:4
16
作者 甘波澜 吴立新 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第1期169-176,共8页
In this study, the impacts of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) on the western Pacific warm pool (WPWP) were investigated. Our results show that the WPWP is li... In this study, the impacts of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) on the western Pacific warm pool (WPWP) were investigated. Our results show that the WPWP is linked with the PDO and the AMO at multiple time scales. On the seasonal time scales, the WPWP and the PDO/AMO reinforce each other, while at decadal time scales the forcing roles of the PDO and the AMO dominate. Notably, a positive PDO tends to enlarge the WPWP at both seasonal and decadal time scales, while a positive AMO tends to reduce the WPWP at decadal time scales. Furthermore, the decadal variability of the WPWP can be well predicted based on the PDO and AMO. 展开更多
关键词 decadal variability western pacific warm pool pacific decadal oscillation Atlantic multi-decadal oscillation
下载PDF
Physical oceanography of the Caroline M4 seamount in the tropical Western Pacific Ocean in summer 2017 被引量:3
17
作者 Xingyu SHI Zhenyan WANG Haijun HUANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第5期1634-1650,共17页
Physical oceanography plays an important role in the formation of submarine sediments,and the distribution of nutriments and biocenoses in seamounts.The M4 seamount is located in the Caroline Island Ridge of the Weste... Physical oceanography plays an important role in the formation of submarine sediments,and the distribution of nutriments and biocenoses in seamounts.The M4 seamount is located in the Caroline Island Ridge of the Western Pacific Ocean.The physical properties around M4 seamount are preliminarily analyzed based on the in-situ data obtained in summer 2017 in Caroline M4 seamount and open-sourced data.We found that the water in the upper 200 m is controlled by the westward North Equatorial Current(NEC),while the water between 300-1000 m is dominated by the eastward North Equatorial Undercurrent(NEUC).The current direction fluctuates significantly below 300 m at upstream stations.At the same depth of the lee sides,the current direction changes with the distance from seamount.These are likely caused by the obstacle of M4 seamount.The calculation results show that there is an anticyclonic cap above M4 seamount caused by tidal rectification.Tidal currents in M4 seamount are squeezed by the topography and amplified,and the amplified tidal currents play a dominant role in M4 seamount.First,the circulation system generated by the interaction of the amplified tidal current and M4 seamount drives the upward/downward movement of the isotherms.Secondly,the thickness of the surface turbulent layer is changed with the tidal phase.Thirdly,high turbulent diffusivities are found in the bottom of M4 seamount,and these are most likely attributed to the turbulent mixing induced by the mutual effect between semidiurnal tidal currents and steep bathymetry.This article of physical oceanography provides scientific basis for further analysis of the distribution of biological community and deposition mechanism in M4 seamount. 展开更多
关键词 Caroline seamount tropical western pacific Ocean CURRENTS water masses TIDES turbulent diffusivities
下载PDF
Delayed Atmospheric Temperature Response to ENSO SST:Role of High SST and the Western Pacific 被引量:2
18
作者 黄平 黄荣辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第2期343-351,共9页
Tropical zonally symmetric atmospheric warming occurs during ENSO's warm phase, and lags the equatorial east Pacific sea surface temperatures (SSTs) by 3-4 months. The role of the Indian and Atlantic oceans on the ... Tropical zonally symmetric atmospheric warming occurs during ENSO's warm phase, and lags the equatorial east Pacific sea surface temperatures (SSTs) by 3-4 months. The role of the Indian and Atlantic oceans on the atmospheric delayed response has been pointed out by earlier studies. For 1951-2004, a regression analysis based on the observed SST data shows the western Pacific has a similarly important role as the Indian and Atlantic. Nevertheless, there is time mismatch of around 1-2 months between the zonally averaged tropical SST anomalies and the atmospheric temperature anomalies. It is expected that the tropospheric temperature should be controlled by diabatic heating forcing, which is sensitive primarily to SST anomalies over regions of high climatological SST, rather than to the tropical mean SST anomalies. To describe this mechanism, we propose a parameterization scheme of diabatic heating anomalies dependant on SST anomalies and climatological SST. The 1-2 month mismatch between tropical mean SST anomalies and air temperature anomalies is reconciled by the fact that the tropical mean heating anomalies are dominated by the SST anomalies over regions of high climatological SST, and lag the tropical mean SST anomalies by 1 month. The mechanism described by this parameterization scheme joins several physical processes of ENSO with reasonable time intervals. And the parameterized heating anomalies work better than the tropical mean SST anomalies for capturing the atmospheric temperature signal relative to ENSO. 展开更多
关键词 ENSO delayed atmospheric response high SST Ocean western pacific
下载PDF
Dynamic features of near-inertial oscillations in the Northwestern Pacific derived from mooring observations from^2015 to 2018 被引量:2
19
作者 HU Shijian LIU Lingling +10 位作者 GUAN Cong ZHANG Linlin WANG Jianing WANG Qingye MA Jie WANG Fujun JIA Fan FENG Junqiao LU Xi WANG Fan HU Dunxin 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第4期1092-1107,共16页
Near-inertial oscillation is an important physical process transferring surface wind energy into deep ocean.We investigated the near-inertial kinetic energy(NIKE)variability using acoustic Doppler current profiler mea... Near-inertial oscillation is an important physical process transferring surface wind energy into deep ocean.We investigated the near-inertial kinetic energy(NIKE)variability using acoustic Doppler current profiler measurements from a mooring array deployed in the tropical western Pacific Ocean along 130°E at 8.5°N,11°N,12.6°N,15°N,and 17.5°N from September 2015 to January 2018.Spatial features,decay timescales,and significant seasonal variability of the observed NIKE were described.At the mooring sites of 17.5°N,15°N,and 12.6°N,the NIKE peaks occurred in boreal autumn and the NIKE troughs were observed in boreal spring.By contrast,the NIKE at 11°N and 8.5°N showed peaks in winter and troughs in summer.Tropical cyclones and strong wind events played an important role in the emergence of high-NIKE events and explained the seasonality and latitudinal characteristics of the observed NIKE. 展开更多
关键词 near-inertial kinetic energy western pacific Ocean tropical cyclones mooring array seasonal variability
下载PDF
The increased storage of suspended particulate matter in the upper water of the tropical Western Pacific during the 2015/2016 super El Nino event 被引量:2
20
作者 Wei GAO Zhenyan WANG +1 位作者 Xuegang LI Haijun HUANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第5期1675-1689,共15页
The climate variability induced by the El Nino-Southern Oscillation(ENSO)cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cyc... The climate variability induced by the El Nino-Southern Oscillation(ENSO)cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cycle.During 2015-2016,a super El Nino event occurred in the equatorial Pacific.Suspended particulate matter(SPM)data and related environmental observations in the tropical Western Pacific were obtained during two cruses in Dec.2014 and 2015,which coincided with the early and peak stages of this super El Nino event.Compared with the marine environments in the tropical Western Pacific in Dec.2014,an obviously enhanced upwelling occurred in the Mindanao Dome region;the nitrate concentration in the euphotic zone almo st tripled;and the size,mass concentration,and volume concentration of SPM obviously increased in Dec.2015.The enhanced upwelling in the Mindanao Dome region carried cold but eutrophic water upward from the deep ocean to shallow depths,even into the euphotic zone,which disrupted the previously N-limited conditions and induced a remarkable increase in phytoplankton blooms in the euphotic zone.The se results reveal the mechanism of how nutrient-limited ecosystems in the tropical Western Pacific respond to super El Nino events.In the context of the ENSO cycle,if predicted changes in biogenic particles occur,the proportion of carbon storage in the tropical Western Pacific is estimated to be increased by more than 52%,ultimately affecting the regional and possibly even global carbon cycle.This paper highlights the prospect for long-term prediction of the impact of a super El Nino event on the global carbon cycle and has profound implications for understanding El Nino events. 展开更多
关键词 suspended particulate matter field observations tropical western pacific 2015/2016 super E1 Nino event ocean carbon cycle
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部