Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has re...Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has recorded this uplift well in the Qaidam Basin. This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments, faults growth index, sedimentary facies variations, and the migration of the depositional depressions. The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal. Tectonic movements controlled deposition in various depressions, and the depressions gradually shifted southeastward. In addition, the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into (a) the southern fault terrace zone, (b) a central Yingxiongling orogenic belt, and (c) the northern fold-thrust belt; divided by the XI fault (Youshi fault) and Youbei fault, respectively. The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India--Asia plate collision. Further, the Basin experienced two phases of intensive tectonic deformation. The first phase occurred during the Middle Eocene--Early Miocene (Xia Ganchaigou Fm. and Shang Ganchaigou Fro., 43.8- 22 Ma), and peaked in the Early Oligocene (Upper Xia Ganchaigou Fro., 31.5 Ma). The second phase occurred between the Middle Miocene and the Present (Shang Youshashan Fro. and Qigequan Fro., 14.9-0 Ma), and was stronger than the first phase. The tectonic--sedimentary evolution and the orienta- tion of surface structures in the western Qaidam Basin resulted from the Tibetan Plateau uplift, and recorded the periodic northward growth of the Plateau. Recognizing this early tectonic--sedimentary evolution supports the previous conclusion that northern Tibet responded to the collision between India and Asia shortly after its initiation. However, the current results reveal that northern Tibet also experi- enced another phase of uplift during the late Neogene. The effects of these two stages of tectonic activity combined to produce the current Tibetan Plateau.展开更多
The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th...The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.展开更多
The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in Chin...The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in China. Compared with mode variance friction, the mode station variance percentage not only reveals more localized characteristics of the variability of the summer rainfall, but also helps to distinguish the regions with a high degree of dominant EOF modes representing the analyzed observational variable. The atmospheric circulation diagnostic studies with the NCEP/NCAR reanalysis daily data from 1966 to 2000 show that in summer, abundant (scarce) rainfall in the belt-area from the upper-middle reaches of the Yangtze River northeastward to the Huaihe River basin is linked to strong (weak) heat sources over the eastern Tibetan Plateau, while the abundant (scarce) rainfall in the area to the south of the middle-lower reaches of the Yangtze River is closely linked to the weak (strong) heat sources over the tropical western Pacific.展开更多
Weibei upland, located in southern part of the Loess Plateau, is a commercial apple production base in China. The enlargement of apple-planting area has a great impact on the regional water cycle. The effects of diffe...Weibei upland, located in southern part of the Loess Plateau, is a commercial apple production base in China. The enlargement of apple-planting area has a great impact on the regional water cycle. The effects of different land use on hydrological parameters are compared and studied in this paper. The main results are as follows (1) The initial and steady infiltration rates in apple orchard are higher than those in other land use types such as grassland, idle land and farmland. Their initial rates of infiltration are 0.823 cm/min, 0.215 cm/min, 0.534 cm/min and 0.586 cm/min in apple orchard, grassland, idle land and farmland respectively. Their steady infiltration rates are 0.45 cm/min, 0.038 cm/min, 0.191 cm/min and 0.155 cm/min respectively. (2) There is no runoff generated in plot of apple orchard in all 8 storm events in observed natural rainfalls, while runoff is generated in winter wheat plot, corn plot and alfalfa plot with runoff coefficients of 2.39%, 1.58% and 0.31% respectively. (3) The transpiration of apple trees is strong and thus soil moisture is gradually depleted. The average soil water contents in 3–9 m soil profile in Changwu plots with apple trees of 14 and 32 years in age are 11.77% and 11.59% and in Luochuan plots with those of 15 and 28 years in age are 11.7% and 11.59% respectively, which are nearly 9.0% of wilting moisture of Changwu soil and 8.6% of wilting moisture of Luochuan soil. The pathway of rainfall percolating to groundwater is hindered by dry soil profile.展开更多
Taking the Himalayan granitoids around Kunjirap in the western Qinghai-Tibetplateau as an example, the authors present in this paper the characteristics of the granitoids richin mantle-derived fluid components and dis...Taking the Himalayan granitoids around Kunjirap in the western Qinghai-Tibetplateau as an example, the authors present in this paper the characteristics of the granitoids richin mantle-derived fluid components and discuss their rock-forming mechanism. The research resultsindicate that the rock assemblage of the studied granitoids involves diopside syenite-diopsidegranite-biotite (monzonitic) granite, consisting mainly of K-feldspar, oligoclase, quartz,iron-phlogolite, diopside and edenite. The rocks are rich in mantle-derived fluid components ofvolatiles including F, alkali metal elements such as K, Na, Rb, Sr and Ha, and radiogenicheat-producing elements such as U and Th. They were generated by the influx of mantle-derived fluidsinto the lower crest to give rise to partial melting during the lithosphere thinning in theQinghai-Tibet plateau.展开更多
Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope...Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope Stage (MIS) 3 by a combination of Accelerator Mass Spectrometric (AMS) carbon-14 dating and regional core correlation. A total of five prominent ice-rafted detritus (IRD) events were recognized in MIS 2 and MIS 3. The IRD sources in MIS 3 are originated from vast carbonate rock outcrops of the Canadian Arctic Archipelago and clastic quartz in MIS 2 may have a Eurasian origin. Mostδ18O andδ13C values of Neogloboquadrina pachyderma (sinistral) (Nps) in Core 08P23 are lighter than the average values of surface sediments. The lighterδ18O andδ13C values of Nps in the two brown layers in MIS 1 and MIS 3 were resulted from meltwater events; and those in the gray layers in MIS 3 were caused by the enhanced sea ice formation. Theδ18O values varied inversely withδ13C in MIS 2 indicate that the study area was covered by thick sea ice or ice sheet with low temperature and little meltwater, which prevented the biological productivity and sea-atmosphere exchange, as well as water mass ventilation. The covaried light values ofδ18O andδ13C in MIS 1 and MIS 3 were resulted from meltwater and/or brine injection.展开更多
As an important site for tourism activities,mountainous areas may generate greater tourism risks than plain areas due to potential natural disasters,social issues,scenic area management,and tourist behavior.Western Si...As an important site for tourism activities,mountainous areas may generate greater tourism risks than plain areas due to potential natural disasters,social issues,scenic area management,and tourist behavior.Western Sichuan Plateau is mostly mountainous area and tourism is its pillar industry,Therefore,the assessment of the tourism risks on the Western Sichuan Plateau is of academic value and practical significance.In this study,we use statistical and remote sensing data,fishbone diagram,and the entropy weighting method to construct a tourism risk evaluation model and classify risks into different levels,and we also use a geographic information system(GIS)for spatial mapping to quantify and spatialize the results.The objectives are 1)to identify the risk sources in the Western Sichuan Plateau and analyze their causal mechanisms,precisely reveal the distribution of tourism risks in the study area;2)improve the precision of tourism risk evaluation in scenic areas and analyze the causes and spatial distribution patterns of tourism risks and propose targeted management measures.This study found that the evaluation results of the four elements of hazard,exposure,vulnerability,and disaster prevention and mitigation capacity on the Western Sichuan Plateau showed significant spatial variability,depending on the natural conditions and the quantity difference of tourism resources in different regions.In addition,the tourism risk is low in most areas of the Western Sichuan Plateau,and disaster prevention and mitigation capacity is higher in areas with high tourism risk where attractions are densely populated and tourism is concentrated.Our study can provide a reference for future analyses of tourism risks in mountainous tourist areas such as in China and worldwide.展开更多
This paper presents a study on species diversity and its ecological service function in the plateau area in western Sichuan. The results show that species diversity in the plantations on the cutover land has a tendenc...This paper presents a study on species diversity and its ecological service function in the plateau area in western Sichuan. The results show that species diversity in the plantations on the cutover land has a tendency to increase and that its ecological service function is to be improved with stand age growing. The species diversity in forest communities is also gradually increased on different succession stage till reaching a climax level. But the species diversity in the climax community is slightly decreased before it reaches a relatively constant status. Ecological service function of diversity is gradually strengthened with the progress of succession. In addition, species diversity in a stand in a similar site and at a same age differs among forest types. Species diversity index within a coniferous and broad-leaved mixed forest is larger than that within a coniferous forest. Meanwhile, species diversity enriches as the tree density increases.展开更多
There is a general consensus that most ophiolites formed above subduction zones(Pearce,2003),particularly during forearc extension at subduction initiation(Shervais,2001;Stern,2004;Whattam and Stern,2011).'Supra-S...There is a general consensus that most ophiolites formed above subduction zones(Pearce,2003),particularly during forearc extension at subduction initiation(Shervais,2001;Stern,2004;Whattam and Stern,2011).'Supra-Subduction zone'(SSZ)ophiolites such as the well-studied Tethyan ophiolites,generally display a characteristic sequential evolution from mid-oceanic ridge basalts(MORBs)to island arc tholeiities(IATs)or bonites(BONs)(Pearce,2003;Dilek and Furnes,2009,2011),which were generated in sequence from the decompression melting of asthenospheric mantle and partial melting of subduction-metasomatized depleted mantle(Stern and Bloomer,1992;Dilek and Furnes,2009;Whattam and Stern,2011).However,ophiolites with MORB and/or oceanic-island basalt(OIB)affinities are rare,and their origin and tectonic nature are poorly understood(Boedo et al.,2013;Saccani et al.,2013).It is interesting that the composition of these ophiolites from the central Tibetan Plateau(CTP)is dominated by MORBs and minor OIBs and a distinct lack of IATs and BONs,which is inconsistent with most ophiolites worldwide(Robinson and Zhou,2008;Zhang et al.,2008).But the generation and tectonic nature of these ophiolites are still controversial.*In this study,we present new geochronological,mineralogical and Sr-Nd isotopic data for the Chayong and Xiewu mafic complexes in the western Garzê-Litang suture zone(GLS),a typical Paleo-Tethyan suture crossing the CTP(Fig.1).The Triassic ophiolite in the western GLS has been described by Li et al.(2009),who foundthat it mainly consists of gabbros,diabases,pillow basalts and a few metamorphic peridotites.The ophiolite has been tectonically dismembered and crops out in Triassic clastic rocks and limestones as tectonic blocks.The Chayong and Xiewu mafic complexes are generally regarded as important fragments of the Triassic ophiolites(e.g.,Jin,2006;Li et al.,2009).Zircon LA-ICP-MS U-Pb ages of234±3 Ma and 236±2 Ma can be interpreted as formation times of the Chayong and Xiewu mafic complexes,respectively.The basalts and gabbros of the Chayong complexexhibitenrichedMORB(E-MORB)compositional affinities except for a weak depletion of Nb,Ta and Ti relative to the primitive mantle,whereas the basalts and gabbros of the Xiewu complex display distinct E-MORB and OIB affinities.The geochemical features suggest a probable fractionation of olivine±clinopyroxene±plagioclase as well as insignificant crustal contamination.The geochemical and Sr-Nd isotopic data reveal that the Chayong mafic rocks may have been derived from depleted MORB-type mantle metasomatized by crustal components and Xiewu mafic rocks from enriched lithosphericmantlemetasomatizedbyOIB-like components.The ratios of Zn/Fet,La/Yb and Sm/Yb indicate that these mafic melts were produced by the partial melting of garnet+minor spinel-bearing peridotite or spinel±minor garnet-bearing peridotite.We propose thatback-arcbasinspreadingassociated with OIB/seamount recycling had occurred in the western GLS at least since the Middle Triassic times,and the decompression melting of the depleted MORB-type asthenospheremantleandpartialmeltingof sub-continental lithosphere were metasomatized by plume-related melts,such as OIBs,which led to the generation of the Chayong and Xiewu mafic melts.展开更多
The Qaidam Basin in the NE Tibetan Plateau has contributed the largest amount of potash in China.However,how the potash was formed has long been a subject of debate.Here we carried out a deep drilling
The southeast margin of Tibet plateau mainly consists of the Western Yunnan plateau (WYP). The uplift and denudation at the southeast margin of Tibet plateau can be represented by that of the WYP. Based on the uplift ...The southeast margin of Tibet plateau mainly consists of the Western Yunnan plateau (WYP). The uplift and denudation at the southeast margin of Tibet plateau can be represented by that of the WYP. Based on the uplift of ancient plantain surface, river terrace and sedimentary response in peripheral basins of the WYP, suggest that the WYP experienced a rapid uplift and denudation in Quaternary. The WYP have been uplifted about 610~700m, and eroded away about 1095~1600m since Quaternary, average denudation rate reach 0 68~0 94mm/a. Uplift rates in different time interval were calculated according to river terrace. Relations between WYP and Tibetan plateau are discussed further..The Yinggehai basin located at the south termination of the Red River fault, it is the younger (mainly Neogene) pull\|apart basin, which developed at releasing bend of the Red River right\|lateral wrench fault. Since the Neogene, the subsidence center of the Yinggehai basin shifted southward and, connected with the Southeast Hainan basin. Both basins collected large amounts of the Holocene and Quaternary deposits of marine origin. They are peripheral marine basin of the WYP.. Silicate clastic sediments in both basins have been large supported from the WYP into both basins through the Red River system. The total volumes derived from the WYP in the Neogene and Quaternary is 2 8004×10 14 t(1 and 5 1206×10 14 t. The sedimentation rate in Yinggehai basin rose from 0 52mm/a in the Neogene to 1 39mm/a in the Quaternary. The facts that accumulation volume and sedimentation rate rose greatly after the Neogene, suggested a rapid uplift in the WYP. The rapid uplift was responsible for the unconformity between the Neogene and Quaternary. Elevation of ancient planation surface,and river terrace supported the rapid uplift of the WYP also. The ancient planation surface was elevated from 2500~2600m to 3000~3200m during Quaternary, seven terraces in Tue can be traced through the field area in elevation from 20 5m to 612m above the modern river surface in the Lancang River. The Jinsha River also incised into bed rocks about 700m in Shigu. All the facts suggest that southeast margin of Tibet plateau rose rapidly; the plateau was elevated about 610~700m in the Quaternary.展开更多
A large amount of accumulated precipitation was recorded over the Eastern Periphery of the Tibetan Plateau(EPTP)in August 2020.Using hourly rain gauge records and the ERA5 reanalysis dataset,we analyzed the unique cha...A large amount of accumulated precipitation was recorded over the Eastern Periphery of the Tibetan Plateau(EPTP)in August 2020.Using hourly rain gauge records and the ERA5 reanalysis dataset,we analyzed the unique characteristics of rainfall in August and the accompanying circulation conditions and conducted a comparison with previous data.This record-breaking amount of accumulated rainfall was centered on the northern slope of the EPTP.This location was in contrast with the historical records of the concentration of rainfall over the middle and southern slopes.The hourly rainfall in August 2020 was both more frequent and more intense than the climatological mean rainfall.An amplification effect of the topography was observed,with the precipitation over the EPTP showing a more significant change with terrain height in August 2020.A circulation analysis showed that cold(warm)anomalies existed over the north(south)of approximately 35°N compared with those in the years when the southern EPTP received more rain.The western Pacific subtropical high was more intense and extended to the west,and the low-level cold air from the north was more active.The enhanced low-level southerly winds on the periphery of the subtropical high injected warm,moist air further north than the climatological mean.These winds became easterly near the northern EPTP and were forced to ascend by the steep terrain.展开更多
The research of land use/land cover change (LUCC) is the core content of global environmental change research and an important part of the sustainable development research. Taking the Midu County of western Yunnan P...The research of land use/land cover change (LUCC) is the core content of global environmental change research and an important part of the sustainable development research. Taking the Midu County of western Yunnan Plateau as the example, GIS technology was used to make the spatial overlay with the land use database in 2009 and land change survey database in 2014 of Midu County, so as to analyze the changes of land use of the county, and reveal the law of land use change, with the aim to provide the basis for further rational utilization of land resources.展开更多
A GCM study is performed of the effects on Asian summer monsoon initiation of the Qinghai-Xizang Plateauand western Pacific warm pool. results show that the Plateau, being a prominent sensible heat source, acts as a b...A GCM study is performed of the effects on Asian summer monsoon initiation of the Qinghai-Xizang Plateauand western Pacific warm pool. results show that the Plateau, being a prominent sensible heat source, acts as a basicfactor for the formation of the monsoon circulation, the northward transported low-latitude and low-level warm,moist flow in relation to the sensible heating experiences dynamic lifting on the south and east sides of the highland,releasing vast quantities of latent heat through condensation, whereby the monsoon circulation pattern is furthermodulated; the temperature contrast between the Pacific warm pool and the Australian / marine continents serves asanother basic factor for the northern SW summer monsoon genesis over the South-China Sea-the western Pacific,which, however, falls into a category of winter monsoon on a physical basis.展开更多
The uplift history has been becoming the key for the geological science of Qinghai—Tibet plateau. The scholars abroad have reconstructed uplift history of the plateau by studying geological process of the inner globe...The uplift history has been becoming the key for the geological science of Qinghai—Tibet plateau. The scholars abroad have reconstructed uplift history of the plateau by studying geological process of the inner globe, they considered that the altitude of the plateau got up to the maximum at 14Ma (M.Coleman et al, 1995; S.Turner et al, 1993)or the plateau got to the present elevation at about 8Ma (T.M.Harrison,1992). The Chinese geologists make use of substitutes of outer environmental elements to deduce that the uplift of Qinghai—Tibet plateau began from 3 4Ma(Li Jijun,1995). It is obvious that there are the different views and controversies about the plateau uplift history.展开更多
There are late Cenozoic lacustrine deposits and loess and red clay and moraines in eastern edge of the Qinghai-Xizang Plateau. Various genetic sediments recorded rich information on late Cenozoic paleo-environment cha...There are late Cenozoic lacustrine deposits and loess and red clay and moraines in eastern edge of the Qinghai-Xizang Plateau. Various genetic sediments recorded rich information on late Cenozoic paleo-environment changes. Xigeda lacustrine formed during 4.2 Ma B.P.-2.6 Ma B.P. There were 9 periodic warm-cold alternations. Eolian deposition in western Sichuan began at 1.15 Ma B.P. The loess-soil sequences recorded successively 14 paleo-monsoon climate cycles. Laterite in Chengdu plain recorded 5 stages of paleoclimatic stages since 1.13 Ma B.P. There was an old glacial period of 4.3 Ma B.P. in eastern Qinghai-Xizang Plateau. During Quaternary, there are 5 extreme paleoclimatic events corresponding with 5 glaciations.展开更多
The Tibetan Plateau is an important area for studying global climate change,but the answers to many scientific problems remain unknown.Here,we present new information from the lacustrine sedimentary record in the west...The Tibetan Plateau is an important area for studying global climate change,but the answers to many scientific problems remain unknown.Here,we present new information from the lacustrine sedimentary record in the western Tibetan Plateau,related to the third most-recent glaciations.Continuous sediment data,including sporopollen,particle size,total organic carbon,mass susceptibility,CaCO_(3),CaSO_(4),BaSO_(4)contents and chronological data,were reconstructed and revealed that climate and environmental conditions obviously and distinctly changed between 600 and 700 thousand years ago.In comparison,the data obtained from the Guliya ice core in this area also corresponds to the global glacial climatic characteristics recorded in basin sediments in the eastern and southeastern regions of the plateau and to the information obtained from ice cores in the Antarctic and Arctic regions.In this study,we conclude that the main reason for the glaciations and new tectonic movement must be a geomagnetic polarity reversal 774 thousand years ago(from Matuyama to Brunhes).Indeed,the results of this study suggest that the described reversal event might have influenced the current global climate pattern and will continue to impact climatic changes in the future.展开更多
The relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the western Pacific warm pool were analyzed comparatively, using the NCEP/NCAR reanalysis da...The relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the western Pacific warm pool were analyzed comparatively, using the NCEP/NCAR reanalysis daily data. The strong (weak) heat source in summer over the eastern Tibetan Plateau will lead to abundant (scarce) summer rainfall in the Yangtze River basin, and scarce/abundant summer rainfall in the eastern part of Southern China. While the strong (weak) heat source in summer over the western Pacific warm pool will lead to another pattern of abundant (scarce) summer rainfall in the middle-lower reaches of the Yangtze River and scarce (abundant) summer rainfall in Southern China and in the region of northern Jiangsu to southern Shandong. Comparatively, the heat source over the eastern Tibetan Plateau affects a larger area of summer rainfall than the heat source over the western Pacific. In both cases of the heat source anomalies over the eastern Tibetan Plateau and over the western Pacific, there exist EAP-like teleconnection patterns in East Asia. The summer rainfall in China is influenced directly by the abnormal vertical motion, which is related closely to the abnormal heat sources in the atmosphere. The ridge line of the western Pacific High locates far south (north) in summer in the case of strong (weak) heat sources over the two areas mentioned above.展开更多
Based on the meteorological data and DEM data in the producing areas of Morchella esculenta in the western Sichuan plateau from 1991 to 2020, the biological characteristics of M. esculenta, as well as the survey of pr...Based on the meteorological data and DEM data in the producing areas of Morchella esculenta in the western Sichuan plateau from 1991 to 2020, the biological characteristics of M. esculenta, as well as the survey of production in the planting area, the correlation between M. esculenta production and the climatic ecological conditions at an altitude of 1 200-3 000 m in the western Sichuan plateau was comprehensively analyzed by using the inverse distance weight method, analytic hierarchy process, climate risk assessment model and geographic information system(GIS), and restrictive or high impact climatic ecological factors were selected as the suitability zoning indicators to carry out the analysis of climatic ecological suitability and planting zoning. The results show that the climatic factors affecting M. esculenta cultivation in the western Sichuan plateau were mainly temperature, temperature difference between day and night, and humidity, and the main meteorological disaster was freezing disaster. Under the influence of vertical changes in temperature, topography and cold damage, the growing areas of M. esculenta in the western Sichuan plateau were mainly distributed in the Minjiang River basin and the river valley along the Dadu River basin at an altitude of 1 200-2 000 m, and were distributed in strips and branches along the rivers. The suitable areas were mainly distributed in Wenchuan, Lixian, Maoxian, Kangding, Jiulong and Luding counties(cities), which were the main producing areas of M. esculenta, but the area was small, accounting for only 3.5% of the study area;the sub-suitable areas were mainly distributed in some towns of Danba, Xiaojin, Wenchuan, Lixian, Maoxian, Heishui and Jiuzhaigou counties, accounting for 36.0% of the total area, and they were the main planting areas of M. esculenta.展开更多
In south\|eastern margin of Tibetan plateau, the Western Yunnan area of China, the NNW\|striking faults are dominant active structures. Their dextral strike\|slips cause conjugate slips along NE\|striking faults, and ...In south\|eastern margin of Tibetan plateau, the Western Yunnan area of China, the NNW\|striking faults are dominant active structures. Their dextral strike\|slips cause conjugate slips along NE\|striking faults, and these left shears induce blocks’ clockwise rotations along vertical axes. For example, Simao Block in the south part of Western Yunnan is bounded by Red River Fault (east), Lancang—Gengma Fault (west), Nandinghe Fault (north), and Dian Bien Phu Fault (south); and the right shears of Red River Fault and Lancang—Gengma Fault induced conjugate left shear along Nandinghe Fault and Dian Bien Phu Fault, and laters’ sinistral slips caused clockwise rotation of the Block. This rotation has been proved by geodetic measurements (Jiang, et al., 1993) and palaeomagnetic measurement (Wu, et al., 1987). In Pu’er area, which is located in the central part of Simao Block, several small\|scale blocks are clockwise rotated by sinistral shears of NE\|striking faults (Wang Yang, 1996). Block rotation along vertical axis is main active deformation style in Western Yunnan.展开更多
基金co-supposed by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX2-EW-ON112)Open Fund of Key Laboratory of Petroleum Resources Research of the Chinese Academy of Sciences(No.KFJJ2010-07)
文摘Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has recorded this uplift well in the Qaidam Basin. This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments, faults growth index, sedimentary facies variations, and the migration of the depositional depressions. The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal. Tectonic movements controlled deposition in various depressions, and the depressions gradually shifted southeastward. In addition, the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into (a) the southern fault terrace zone, (b) a central Yingxiongling orogenic belt, and (c) the northern fold-thrust belt; divided by the XI fault (Youshi fault) and Youbei fault, respectively. The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India--Asia plate collision. Further, the Basin experienced two phases of intensive tectonic deformation. The first phase occurred during the Middle Eocene--Early Miocene (Xia Ganchaigou Fm. and Shang Ganchaigou Fro., 43.8- 22 Ma), and peaked in the Early Oligocene (Upper Xia Ganchaigou Fro., 31.5 Ma). The second phase occurred between the Middle Miocene and the Present (Shang Youshashan Fro. and Qigequan Fro., 14.9-0 Ma), and was stronger than the first phase. The tectonic--sedimentary evolution and the orienta- tion of surface structures in the western Qaidam Basin resulted from the Tibetan Plateau uplift, and recorded the periodic northward growth of the Plateau. Recognizing this early tectonic--sedimentary evolution supports the previous conclusion that northern Tibet responded to the collision between India and Asia shortly after its initiation. However, the current results reveal that northern Tibet also experi- enced another phase of uplift during the late Neogene. The effects of these two stages of tectonic activity combined to produce the current Tibetan Plateau.
基金supported jointly by the National Natural Science Foundation of China(Grant No.91337216)the Special Fund for Public Welfare Industry(Meteorology),administered by the Chinese Ministry of Finance and the Ministry of Science and Technology(Grant No.GYHY201406001)the CAS XDA(Grant No.11010402)
文摘The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.
基金This work was supported by the National Key Program for Developing Basic Research (Grant No. 2004CB418303)the National Natural Science Foundation of China (Grant No. 40175018).
文摘The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in China. Compared with mode variance friction, the mode station variance percentage not only reveals more localized characteristics of the variability of the summer rainfall, but also helps to distinguish the regions with a high degree of dominant EOF modes representing the analyzed observational variable. The atmospheric circulation diagnostic studies with the NCEP/NCAR reanalysis daily data from 1966 to 2000 show that in summer, abundant (scarce) rainfall in the belt-area from the upper-middle reaches of the Yangtze River northeastward to the Huaihe River basin is linked to strong (weak) heat sources over the eastern Tibetan Plateau, while the abundant (scarce) rainfall in the area to the south of the middle-lower reaches of the Yangtze River is closely linked to the weak (strong) heat sources over the tropical western Pacific.
基金National Natural Science Foundation of China, No. 49890330 Western Development Project of Chinese Academy of Sciences
文摘Weibei upland, located in southern part of the Loess Plateau, is a commercial apple production base in China. The enlargement of apple-planting area has a great impact on the regional water cycle. The effects of different land use on hydrological parameters are compared and studied in this paper. The main results are as follows (1) The initial and steady infiltration rates in apple orchard are higher than those in other land use types such as grassland, idle land and farmland. Their initial rates of infiltration are 0.823 cm/min, 0.215 cm/min, 0.534 cm/min and 0.586 cm/min in apple orchard, grassland, idle land and farmland respectively. Their steady infiltration rates are 0.45 cm/min, 0.038 cm/min, 0.191 cm/min and 0.155 cm/min respectively. (2) There is no runoff generated in plot of apple orchard in all 8 storm events in observed natural rainfalls, while runoff is generated in winter wheat plot, corn plot and alfalfa plot with runoff coefficients of 2.39%, 1.58% and 0.31% respectively. (3) The transpiration of apple trees is strong and thus soil moisture is gradually depleted. The average soil water contents in 3–9 m soil profile in Changwu plots with apple trees of 14 and 32 years in age are 11.77% and 11.59% and in Luochuan plots with those of 15 and 28 years in age are 11.7% and 11.59% respectively, which are nearly 9.0% of wilting moisture of Changwu soil and 8.6% of wilting moisture of Luochuan soil. The pathway of rainfall percolating to groundwater is hindered by dry soil profile.
基金the China Postdoctoral Science Foundation the Key Project (No.9502010)of the former Ministry of Geology and Mineral Resources+1 种基金 the National Key BasicResearch Project (No.G1999043211) the NationalScience Foundation of China Outstanding Youth Grant(No.49925306).
文摘Taking the Himalayan granitoids around Kunjirap in the western Qinghai-Tibetplateau as an example, the authors present in this paper the characteristics of the granitoids richin mantle-derived fluid components and discuss their rock-forming mechanism. The research resultsindicate that the rock assemblage of the studied granitoids involves diopside syenite-diopsidegranite-biotite (monzonitic) granite, consisting mainly of K-feldspar, oligoclase, quartz,iron-phlogolite, diopside and edenite. The rocks are rich in mantle-derived fluid components ofvolatiles including F, alkali metal elements such as K, Na, Rb, Sr and Ha, and radiogenicheat-producing elements such as U and Th. They were generated by the influx of mantle-derived fluidsinto the lower crest to give rise to partial melting during the lithosphere thinning in theQinghai-Tibet plateau.
基金The National Natural Science Foundation of China under contract Nos 41030859,41211120173,CHINARE2015-03-02 and IC201105the Geological Investigation Project of China Geological Survey Nos 12120113006200 and 1212011120044
文摘Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope Stage (MIS) 3 by a combination of Accelerator Mass Spectrometric (AMS) carbon-14 dating and regional core correlation. A total of five prominent ice-rafted detritus (IRD) events were recognized in MIS 2 and MIS 3. The IRD sources in MIS 3 are originated from vast carbonate rock outcrops of the Canadian Arctic Archipelago and clastic quartz in MIS 2 may have a Eurasian origin. Mostδ18O andδ13C values of Neogloboquadrina pachyderma (sinistral) (Nps) in Core 08P23 are lighter than the average values of surface sediments. The lighterδ18O andδ13C values of Nps in the two brown layers in MIS 1 and MIS 3 were resulted from meltwater events; and those in the gray layers in MIS 3 were caused by the enhanced sea ice formation. Theδ18O values varied inversely withδ13C in MIS 2 indicate that the study area was covered by thick sea ice or ice sheet with low temperature and little meltwater, which prevented the biological productivity and sea-atmosphere exchange, as well as water mass ventilation. The covaried light values ofδ18O andδ13C in MIS 1 and MIS 3 were resulted from meltwater and/or brine injection.
基金Social Science Foundation of Liaoning Province(L21BJY028)。
文摘As an important site for tourism activities,mountainous areas may generate greater tourism risks than plain areas due to potential natural disasters,social issues,scenic area management,and tourist behavior.Western Sichuan Plateau is mostly mountainous area and tourism is its pillar industry,Therefore,the assessment of the tourism risks on the Western Sichuan Plateau is of academic value and practical significance.In this study,we use statistical and remote sensing data,fishbone diagram,and the entropy weighting method to construct a tourism risk evaluation model and classify risks into different levels,and we also use a geographic information system(GIS)for spatial mapping to quantify and spatialize the results.The objectives are 1)to identify the risk sources in the Western Sichuan Plateau and analyze their causal mechanisms,precisely reveal the distribution of tourism risks in the study area;2)improve the precision of tourism risk evaluation in scenic areas and analyze the causes and spatial distribution patterns of tourism risks and propose targeted management measures.This study found that the evaluation results of the four elements of hazard,exposure,vulnerability,and disaster prevention and mitigation capacity on the Western Sichuan Plateau showed significant spatial variability,depending on the natural conditions and the quantity difference of tourism resources in different regions.In addition,the tourism risk is low in most areas of the Western Sichuan Plateau,and disaster prevention and mitigation capacity is higher in areas with high tourism risk where attractions are densely populated and tourism is concentrated.Our study can provide a reference for future analyses of tourism risks in mountainous tourist areas such as in China and worldwide.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Scicnces(KZCX2-SW-319-4)
文摘This paper presents a study on species diversity and its ecological service function in the plateau area in western Sichuan. The results show that species diversity in the plantations on the cutover land has a tendency to increase and that its ecological service function is to be improved with stand age growing. The species diversity in forest communities is also gradually increased on different succession stage till reaching a climax level. But the species diversity in the climax community is slightly decreased before it reaches a relatively constant status. Ecological service function of diversity is gradually strengthened with the progress of succession. In addition, species diversity in a stand in a similar site and at a same age differs among forest types. Species diversity index within a coniferous and broad-leaved mixed forest is larger than that within a coniferous forest. Meanwhile, species diversity enriches as the tree density increases.
基金financially supported by the National Nature Science Foundation of China (Grant 41272079)
文摘There is a general consensus that most ophiolites formed above subduction zones(Pearce,2003),particularly during forearc extension at subduction initiation(Shervais,2001;Stern,2004;Whattam and Stern,2011).'Supra-Subduction zone'(SSZ)ophiolites such as the well-studied Tethyan ophiolites,generally display a characteristic sequential evolution from mid-oceanic ridge basalts(MORBs)to island arc tholeiities(IATs)or bonites(BONs)(Pearce,2003;Dilek and Furnes,2009,2011),which were generated in sequence from the decompression melting of asthenospheric mantle and partial melting of subduction-metasomatized depleted mantle(Stern and Bloomer,1992;Dilek and Furnes,2009;Whattam and Stern,2011).However,ophiolites with MORB and/or oceanic-island basalt(OIB)affinities are rare,and their origin and tectonic nature are poorly understood(Boedo et al.,2013;Saccani et al.,2013).It is interesting that the composition of these ophiolites from the central Tibetan Plateau(CTP)is dominated by MORBs and minor OIBs and a distinct lack of IATs and BONs,which is inconsistent with most ophiolites worldwide(Robinson and Zhou,2008;Zhang et al.,2008).But the generation and tectonic nature of these ophiolites are still controversial.*In this study,we present new geochronological,mineralogical and Sr-Nd isotopic data for the Chayong and Xiewu mafic complexes in the western Garzê-Litang suture zone(GLS),a typical Paleo-Tethyan suture crossing the CTP(Fig.1).The Triassic ophiolite in the western GLS has been described by Li et al.(2009),who foundthat it mainly consists of gabbros,diabases,pillow basalts and a few metamorphic peridotites.The ophiolite has been tectonically dismembered and crops out in Triassic clastic rocks and limestones as tectonic blocks.The Chayong and Xiewu mafic complexes are generally regarded as important fragments of the Triassic ophiolites(e.g.,Jin,2006;Li et al.,2009).Zircon LA-ICP-MS U-Pb ages of234±3 Ma and 236±2 Ma can be interpreted as formation times of the Chayong and Xiewu mafic complexes,respectively.The basalts and gabbros of the Chayong complexexhibitenrichedMORB(E-MORB)compositional affinities except for a weak depletion of Nb,Ta and Ti relative to the primitive mantle,whereas the basalts and gabbros of the Xiewu complex display distinct E-MORB and OIB affinities.The geochemical features suggest a probable fractionation of olivine±clinopyroxene±plagioclase as well as insignificant crustal contamination.The geochemical and Sr-Nd isotopic data reveal that the Chayong mafic rocks may have been derived from depleted MORB-type mantle metasomatized by crustal components and Xiewu mafic rocks from enriched lithosphericmantlemetasomatizedbyOIB-like components.The ratios of Zn/Fet,La/Yb and Sm/Yb indicate that these mafic melts were produced by the partial melting of garnet+minor spinel-bearing peridotite or spinel±minor garnet-bearing peridotite.We propose thatback-arcbasinspreadingassociated with OIB/seamount recycling had occurred in the western GLS at least since the Middle Triassic times,and the decompression melting of the depleted MORB-type asthenospheremantleandpartialmeltingof sub-continental lithosphere were metasomatized by plume-related melts,such as OIBs,which led to the generation of the Chayong and Xiewu mafic melts.
文摘The Qaidam Basin in the NE Tibetan Plateau has contributed the largest amount of potash in China.However,how the potash was formed has long been a subject of debate.Here we carried out a deep drilling
文摘The southeast margin of Tibet plateau mainly consists of the Western Yunnan plateau (WYP). The uplift and denudation at the southeast margin of Tibet plateau can be represented by that of the WYP. Based on the uplift of ancient plantain surface, river terrace and sedimentary response in peripheral basins of the WYP, suggest that the WYP experienced a rapid uplift and denudation in Quaternary. The WYP have been uplifted about 610~700m, and eroded away about 1095~1600m since Quaternary, average denudation rate reach 0 68~0 94mm/a. Uplift rates in different time interval were calculated according to river terrace. Relations between WYP and Tibetan plateau are discussed further..The Yinggehai basin located at the south termination of the Red River fault, it is the younger (mainly Neogene) pull\|apart basin, which developed at releasing bend of the Red River right\|lateral wrench fault. Since the Neogene, the subsidence center of the Yinggehai basin shifted southward and, connected with the Southeast Hainan basin. Both basins collected large amounts of the Holocene and Quaternary deposits of marine origin. They are peripheral marine basin of the WYP.. Silicate clastic sediments in both basins have been large supported from the WYP into both basins through the Red River system. The total volumes derived from the WYP in the Neogene and Quaternary is 2 8004×10 14 t(1 and 5 1206×10 14 t. The sedimentation rate in Yinggehai basin rose from 0 52mm/a in the Neogene to 1 39mm/a in the Quaternary. The facts that accumulation volume and sedimentation rate rose greatly after the Neogene, suggested a rapid uplift in the WYP. The rapid uplift was responsible for the unconformity between the Neogene and Quaternary. Elevation of ancient planation surface,and river terrace supported the rapid uplift of the WYP also. The ancient planation surface was elevated from 2500~2600m to 3000~3200m during Quaternary, seven terraces in Tue can be traced through the field area in elevation from 20 5m to 612m above the modern river surface in the Lancang River. The Jinsha River also incised into bed rocks about 700m in Shigu. All the facts suggest that southeast margin of Tibet plateau rose rapidly; the plateau was elevated about 610~700m in the Quaternary.
基金This work was jointly supported by the National Key R&D Program of China(Grant No.2018YFC1507603)the National Natural Science Foundation of China(Grant No.41875112).
文摘A large amount of accumulated precipitation was recorded over the Eastern Periphery of the Tibetan Plateau(EPTP)in August 2020.Using hourly rain gauge records and the ERA5 reanalysis dataset,we analyzed the unique characteristics of rainfall in August and the accompanying circulation conditions and conducted a comparison with previous data.This record-breaking amount of accumulated rainfall was centered on the northern slope of the EPTP.This location was in contrast with the historical records of the concentration of rainfall over the middle and southern slopes.The hourly rainfall in August 2020 was both more frequent and more intense than the climatological mean rainfall.An amplification effect of the topography was observed,with the precipitation over the EPTP showing a more significant change with terrain height in August 2020.A circulation analysis showed that cold(warm)anomalies existed over the north(south)of approximately 35°N compared with those in the years when the southern EPTP received more rain.The western Pacific subtropical high was more intense and extended to the west,and the low-level cold air from the north was more active.The enhanced low-level southerly winds on the periphery of the subtropical high injected warm,moist air further north than the climatological mean.These winds became easterly near the northern EPTP and were forced to ascend by the steep terrain.
基金Supported by the Graduates Program of the Fund for Scientific Research of the Education Department of Yunnan Province(2016YJS093)~~
文摘The research of land use/land cover change (LUCC) is the core content of global environmental change research and an important part of the sustainable development research. Taking the Midu County of western Yunnan Plateau as the example, GIS technology was used to make the spatial overlay with the land use database in 2009 and land change survey database in 2014 of Midu County, so as to analyze the changes of land use of the county, and reveal the law of land use change, with the aim to provide the basis for further rational utilization of land resources.
文摘A GCM study is performed of the effects on Asian summer monsoon initiation of the Qinghai-Xizang Plateauand western Pacific warm pool. results show that the Plateau, being a prominent sensible heat source, acts as a basicfactor for the formation of the monsoon circulation, the northward transported low-latitude and low-level warm,moist flow in relation to the sensible heating experiences dynamic lifting on the south and east sides of the highland,releasing vast quantities of latent heat through condensation, whereby the monsoon circulation pattern is furthermodulated; the temperature contrast between the Pacific warm pool and the Australian / marine continents serves asanother basic factor for the northern SW summer monsoon genesis over the South-China Sea-the western Pacific,which, however, falls into a category of winter monsoon on a physical basis.
文摘The uplift history has been becoming the key for the geological science of Qinghai—Tibet plateau. The scholars abroad have reconstructed uplift history of the plateau by studying geological process of the inner globe, they considered that the altitude of the plateau got up to the maximum at 14Ma (M.Coleman et al, 1995; S.Turner et al, 1993)or the plateau got to the present elevation at about 8Ma (T.M.Harrison,1992). The Chinese geologists make use of substitutes of outer environmental elements to deduce that the uplift of Qinghai—Tibet plateau began from 3 4Ma(Li Jijun,1995). It is obvious that there are the different views and controversies about the plateau uplift history.
文摘There are late Cenozoic lacustrine deposits and loess and red clay and moraines in eastern edge of the Qinghai-Xizang Plateau. Various genetic sediments recorded rich information on late Cenozoic paleo-environment changes. Xigeda lacustrine formed during 4.2 Ma B.P.-2.6 Ma B.P. There were 9 periodic warm-cold alternations. Eolian deposition in western Sichuan began at 1.15 Ma B.P. The loess-soil sequences recorded successively 14 paleo-monsoon climate cycles. Laterite in Chengdu plain recorded 5 stages of paleoclimatic stages since 1.13 Ma B.P. There was an old glacial period of 4.3 Ma B.P. in eastern Qinghai-Xizang Plateau. During Quaternary, there are 5 extreme paleoclimatic events corresponding with 5 glaciations.
基金supported by grants from the China Geological Survey(Grant Nos.1212010610102,DD20190065).
文摘The Tibetan Plateau is an important area for studying global climate change,but the answers to many scientific problems remain unknown.Here,we present new information from the lacustrine sedimentary record in the western Tibetan Plateau,related to the third most-recent glaciations.Continuous sediment data,including sporopollen,particle size,total organic carbon,mass susceptibility,CaCO_(3),CaSO_(4),BaSO_(4)contents and chronological data,were reconstructed and revealed that climate and environmental conditions obviously and distinctly changed between 600 and 700 thousand years ago.In comparison,the data obtained from the Guliya ice core in this area also corresponds to the global glacial climatic characteristics recorded in basin sediments in the eastern and southeastern regions of the plateau and to the information obtained from ice cores in the Antarctic and Arctic regions.In this study,we conclude that the main reason for the glaciations and new tectonic movement must be a geomagnetic polarity reversal 774 thousand years ago(from Matuyama to Brunhes).Indeed,the results of this study suggest that the described reversal event might have influenced the current global climate pattern and will continue to impact climatic changes in the future.
基金Part One in the project of Key National Fundamental Research and Development Planning (G1998040903) Natural Science Foundation of China (40175018)
文摘The relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the western Pacific warm pool were analyzed comparatively, using the NCEP/NCAR reanalysis daily data. The strong (weak) heat source in summer over the eastern Tibetan Plateau will lead to abundant (scarce) summer rainfall in the Yangtze River basin, and scarce/abundant summer rainfall in the eastern part of Southern China. While the strong (weak) heat source in summer over the western Pacific warm pool will lead to another pattern of abundant (scarce) summer rainfall in the middle-lower reaches of the Yangtze River and scarce (abundant) summer rainfall in Southern China and in the region of northern Jiangsu to southern Shandong. Comparatively, the heat source over the eastern Tibetan Plateau affects a larger area of summer rainfall than the heat source over the western Pacific. In both cases of the heat source anomalies over the eastern Tibetan Plateau and over the western Pacific, there exist EAP-like teleconnection patterns in East Asia. The summer rainfall in China is influenced directly by the abnormal vertical motion, which is related closely to the abnormal heat sources in the atmosphere. The ridge line of the western Pacific High locates far south (north) in summer in the case of strong (weak) heat sources over the two areas mentioned above.
基金Supported by the Second Tibetan Plateau Scientific Expedition and Research Pro-gram(STEP)(2019QZKK0303-02)the Foundation of Science and Technology Development of Sichuan Province Key Laboratory of Heavy Rain and Drought-Flood Disasters in Plateau and Basin(SCQXKJYJXMS202109).
文摘Based on the meteorological data and DEM data in the producing areas of Morchella esculenta in the western Sichuan plateau from 1991 to 2020, the biological characteristics of M. esculenta, as well as the survey of production in the planting area, the correlation between M. esculenta production and the climatic ecological conditions at an altitude of 1 200-3 000 m in the western Sichuan plateau was comprehensively analyzed by using the inverse distance weight method, analytic hierarchy process, climate risk assessment model and geographic information system(GIS), and restrictive or high impact climatic ecological factors were selected as the suitability zoning indicators to carry out the analysis of climatic ecological suitability and planting zoning. The results show that the climatic factors affecting M. esculenta cultivation in the western Sichuan plateau were mainly temperature, temperature difference between day and night, and humidity, and the main meteorological disaster was freezing disaster. Under the influence of vertical changes in temperature, topography and cold damage, the growing areas of M. esculenta in the western Sichuan plateau were mainly distributed in the Minjiang River basin and the river valley along the Dadu River basin at an altitude of 1 200-2 000 m, and were distributed in strips and branches along the rivers. The suitable areas were mainly distributed in Wenchuan, Lixian, Maoxian, Kangding, Jiulong and Luding counties(cities), which were the main producing areas of M. esculenta, but the area was small, accounting for only 3.5% of the study area;the sub-suitable areas were mainly distributed in some towns of Danba, Xiaojin, Wenchuan, Lixian, Maoxian, Heishui and Jiuzhaigou counties, accounting for 36.0% of the total area, and they were the main planting areas of M. esculenta.
文摘In south\|eastern margin of Tibetan plateau, the Western Yunnan area of China, the NNW\|striking faults are dominant active structures. Their dextral strike\|slips cause conjugate slips along NE\|striking faults, and these left shears induce blocks’ clockwise rotations along vertical axes. For example, Simao Block in the south part of Western Yunnan is bounded by Red River Fault (east), Lancang—Gengma Fault (west), Nandinghe Fault (north), and Dian Bien Phu Fault (south); and the right shears of Red River Fault and Lancang—Gengma Fault induced conjugate left shear along Nandinghe Fault and Dian Bien Phu Fault, and laters’ sinistral slips caused clockwise rotation of the Block. This rotation has been proved by geodetic measurements (Jiang, et al., 1993) and palaeomagnetic measurement (Wu, et al., 1987). In Pu’er area, which is located in the central part of Simao Block, several small\|scale blocks are clockwise rotated by sinistral shears of NE\|striking faults (Wang Yang, 1996). Block rotation along vertical axis is main active deformation style in Western Yunnan.