期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Abnormality of thermal structure and current in the upper western tropical Pacific Ocean and its effect on subtropical high
1
作者 Pu Shuzhen Yu Huiling First Institute of Oceanography, State Oceanic Administration, P. O. Box 98, Qingdao 266003, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第1期67-82,共16页
-Mainly on the basis of the data obtained during PRC/US bilateral TOGA cruises, abnormal variation occurred during the 1986/1987 El Nino is shown in this paper about the thermal structure and circulation of the upper ... -Mainly on the basis of the data obtained during PRC/US bilateral TOGA cruises, abnormal variation occurred during the 1986/1987 El Nino is shown in this paper about the thermal structure and circulation of the upper western tropical Pacific Ocean. The effects of the abmormal variation on the subtropical high over the Northwest Pacific Ocean are discussed. During the El Nino: (1) In the east part of the western tropical Pacific Ocean (the subsurface temperature data on the 165° E section are taken as an example), the water wanner than 29 C in the upper layer spread on the longitudinal section and positive temperature anormalies appeared in a large area of the sea surface. (2) In the west part of the western tropical Pacific Ocean (the subsurface temperature data on the 137°E section are representative ), the cross section occupied by the upper layer warmer water ( T >28 ℃ ) became shrunk, and the sea surface temperature showed negative amomalies. (3) The eastward flows in the upper layer of the 165°E section strengthened. (4)The northward flow volume of warm water from the origin area of Kuroshio, i. e. , the tropical oceanic area south of 18?0' N and from the west of 130?E to the Philippine coast, decreased. When those kinds of abnomal variation occurred, air divergence on the low level (1 000 hPa) over the Northwest Pacific Ocean was intensified, favourable to the strengthening of subtropical high over the Northwest Pacific Ocean. 展开更多
关键词 Abnormality of thermal structure and current in the upper western tropical pacific ocean and its effect on subtropical high Nino
下载PDF
Physical oceanography of the Caroline M4 seamount in the tropical Western Pacific Ocean in summer 2017 被引量:4
2
作者 Xingyu SHI Zhenyan WANG Haijun HUANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第5期1634-1650,共17页
Physical oceanography plays an important role in the formation of submarine sediments,and the distribution of nutriments and biocenoses in seamounts.The M4 seamount is located in the Caroline Island Ridge of the Weste... Physical oceanography plays an important role in the formation of submarine sediments,and the distribution of nutriments and biocenoses in seamounts.The M4 seamount is located in the Caroline Island Ridge of the Western Pacific Ocean.The physical properties around M4 seamount are preliminarily analyzed based on the in-situ data obtained in summer 2017 in Caroline M4 seamount and open-sourced data.We found that the water in the upper 200 m is controlled by the westward North Equatorial Current(NEC),while the water between 300-1000 m is dominated by the eastward North Equatorial Undercurrent(NEUC).The current direction fluctuates significantly below 300 m at upstream stations.At the same depth of the lee sides,the current direction changes with the distance from seamount.These are likely caused by the obstacle of M4 seamount.The calculation results show that there is an anticyclonic cap above M4 seamount caused by tidal rectification.Tidal currents in M4 seamount are squeezed by the topography and amplified,and the amplified tidal currents play a dominant role in M4 seamount.First,the circulation system generated by the interaction of the amplified tidal current and M4 seamount drives the upward/downward movement of the isotherms.Secondly,the thickness of the surface turbulent layer is changed with the tidal phase.Thirdly,high turbulent diffusivities are found in the bottom of M4 seamount,and these are most likely attributed to the turbulent mixing induced by the mutual effect between semidiurnal tidal currents and steep bathymetry.This article of physical oceanography provides scientific basis for further analysis of the distribution of biological community and deposition mechanism in M4 seamount. 展开更多
关键词 Caroline seamount tropical western pacific ocean CURRENTS water masses TIDES turbulent diffusivities
下载PDF
N2 fixation rate and diazotroph community structure in the western tropical North Pacific Ocean 被引量:1
3
作者 Run Zhang Dongsheng Zhang +5 位作者 Min Chen Zhibing Jiang Chunsheng Wang Minfang Zheng Yusheng Qiu Jie Huang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第12期26-34,共9页
In the present study, we report N2 fixation rate(15N isotope tracer assay) and the diazotroph community structure(using the molecular method) in the western tropical North Pacific Ocean(WTNP)(13°–20°N, 120&... In the present study, we report N2 fixation rate(15N isotope tracer assay) and the diazotroph community structure(using the molecular method) in the western tropical North Pacific Ocean(WTNP)(13°–20°N, 120°–160°E). Our independent evidence on the basis of both in situ N2 fixation activity and diazotroph community structure showed the dominance of unicellular N2 fixation over majority of the WTNP surface waters during the sampling periods.Moreover, a shift in the diazotrophic composition from unicellular cyanobacteria group B-dominated to Trichodesmium spp.-dominated toward the western boundary current(Kuroshio) was also observed in 2013. We hypothesize that nutrient availability may have played a major role in regulating the biogeography of N2 fixation.In surface waters, volumetric N2 fixation rate(calculated by nitrogen) ranged between 0.6 and 2.6 nmol/(L·d) and averaged(1.2±0.5) nmol/(L·d), with <10 μm size fraction contributed predominantly(88%±6%) to the total rate between 135°E and 160°E. Depth-integrated N2 fixation rate over the upper 200 m ranged between 150 μmol/(m^2·d)and 480 μmol/(m^2·d)average(225±105) μmol/(m^2·d). N2 fixation can account for 6.2%±3.7% of the depthintegrated primary production, suggesting that N2 fixation is a significant N source sustaining new and export production in the WTNP. The role of N2 fixation in biogeochemical cycling in this climate change-vulnerable region calls for further investigations. 展开更多
关键词 western tropical North pacific ocean(WTNP) N2 fixation 15N isotope tracer assay unicellular diazotroph
下载PDF
The bacterial diversity and community composition altered in the oxygen minimum zone of the Tropical Western Pacific Ocean 被引量:1
4
作者 Qiqi SUN Jinming SONG +2 位作者 Xuegang LI Huamao YUAN Qidong WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第5期1690-1704,共15页
The oxygen minimum zones(OMZs)are globally expanding,yet the variation pattern of microbial communities related to dissolved oxygen levels remain unclear.Spatial variability of bacterial diversity and community compos... The oxygen minimum zones(OMZs)are globally expanding,yet the variation pattern of microbial communities related to dissolved oxygen levels remain unclear.Spatial variability of bacterial diversity and community composition(repre sented by 16 S rRNA)of six stations was investigated within the water column in the seamount area of Tropical Western Pacific Ocean(TWPO)in May 2019.The seawater has dissolved oxygen(DO)concentration of 3.01-6.68 mg/L and the core of the oxygen minimum zones was located between the depths of 650 m and 1750 m.The bacterial alpha-diversity showed unimodal pattern with the decreasing DO with depths and peaked in the upper oxycline(UO)of OMZs.The bacterial community structure of the mixed layer(ML)and the bottom layer clustered and separated from each other,while those of UO and the OMZ core(OM)clustered and overlapped.Overall,bacterial community composition transitioned from being Alphaproteobacteria and Gammaproteobacteria-dominant in ML to being Gammaproteobacteria and Nitrososphaeria/Deltaproteobacteria-dominant in UO and OM,and then changed to being Clostridia and unidentified Actinobacteria-dominant in the bottom layer.Moreover,both bacterial alpha-diversity and the abundant classes fitted varying sectioned functions with DO.The DO solely explained 40.37%of the variation of bacterial community composition among layers(P<0.001).The predicted function profiling showed that the water column was predominant by chemoheterotrophy,cyanobacteria,and photoautotrophy in ML,by chemoheterotrophy and nitrate/sulfide cycling in UO and OM,and by chemoheterotrophy and ferme ntation in the bottom layer.Our findings revealed the DO-associated variation in bacterial diversity and community composition,and help to clarify the potential responses of microbes and their involved biogeochemical processes to the expansion and intensification of OMZs. 展开更多
关键词 bacterial diversity community composition oxygen minimum zones(OMZs) dissolved oxygen tropical western pacific ocean(TWPO)
下载PDF
Characteristics of change of the SST in the tropical western Pa-cific and the tropical Indian Ocean and its response to thechange of the Antarctic ice area 被引量:1
5
作者 陈锦年 秦曾灏 《Chinese Journal of Polar Science》 2000年第1期9-17,共9页
In this paper, by using ocean surface temperature data(COADS), the study is made of the characteristics of the monthly and annual changes of the SST in the tropical western Pacific and Indian Oceans, which have impo... In this paper, by using ocean surface temperature data(COADS), the study is made of the characteristics of the monthly and annual changes of the SST in the tropical western Pacific and Indian Oceans, which have important influences on the climate change of the whole globe and the relation between ENSO(El Nio Southern Oscillation) and the Antarctic ice area is also discussed. The result indicates that in the tropical western Pacific and the Indian Oceans the change of Sea Surface Temperture(SST) is conspicuous both monthly and annaully, and shows different change tendency between them. This result may be due to different relation in the vibration period of SST between the two Oceans. The better corresponding relationship is obvious in the annual change of SST in the tropical Indian Ocean with the occurrence El Nio and La Nia. The change of the SST in the tropical western Pacific and the tropical Indian Oceans has a close relation to the Antarctic ice area, especially to the ice areas in the eastern south Pole and Ross Sea, and its notable correlative relationship appears in 16 months when the SST of the tropical western Pacific and the Indian Oceans lag back the Antarctic ice area. 展开更多
关键词 Antarctic ice area SST tropical western pacific ocean Indian ocean tropical eastern pacific ocean.
下载PDF
Observation of physical oceanography at the Y3 seamount (Yap Arc) in winter 2014 被引量:1
6
作者 Zhenyan WANG Xingyu SHI Haijun HUANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第4期1314-1332,共19页
Seamounts aff ect the surrounding physical oceanography and form unique dynamic processes.The infl uences of these processes on biological and sedimentary distributions are quite diff erent in seamount areas at diff e... Seamounts aff ect the surrounding physical oceanography and form unique dynamic processes.The infl uences of these processes on biological and sedimentary distributions are quite diff erent in seamount areas at diff erent depths.The Y3 seamount is located in the Yap Arc of the tropical Western Pacifi c Ocean.The water depth of its summit is~280 m.Based on fi eld data obtained in December 2014 and other open-access data,the physical oceanography around the Y3 seamount was preliminarily analyzed.The results show that the upper layer(0-150 m)was under the infl uence of the westward-fl owing North Equatorial Current(NEC),while the eastward-fl owing North Equatorial Undercurrent(NEUC)controlled the water between 200-800 m.The NEC was strong and steady,but the NEUC was disturbed by the Y3 seamount.The cold dome above the Y3 seamount was not caused by a Taylor cap or tidal rectifi cation but probably by upwelling during the survey time.Tidal currents were squeezed against topography and greatly amplifi ed in the Y3 seamount.The thicknesses of the surface turbulent layers were greatly infl uenced by the spring-neap tidal cycle.The turbulent diff usivities in the sea surface layer above the Y3 seamount were much larger than those in the open ocean.Calculations showed that the surface wind stress greatly aff ected the turbulent mixing in the surface layer of the Y3 seamount.The reciprocal action between the amplifi ed tidal currents and topography was the most likely cause of the turbulent mixing near the bottom of the Y3 seamount.This study can provide a scientifi c basis for further study of biological and depositional characteristics at the Y3 seamount. 展开更多
关键词 Yap seamount tropical western pacific ocean current water mass TIDES turbulent diffusivity
下载PDF
Three-dimensional structure of mesoscale eddies in the western tropical Pacific as revealed by a high-resolution ocean simulation 被引量:1
7
作者 WANG QingYe 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第9期1719-1731,共13页
The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy t... The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy tracking algorithms are applied to simulated horizontal velocity vectors, and the anticyclonic and cyclonic eddies identified are composited to obtain their three-dimensional structures. The mean lifetime of all long-lived eddies is about 52 days, and their mean diameter is 147 km. Two typical characteristics of mesoscale eddies are revealed and possible dynamic explanations are analyzed. One typical characteristic is that surface eddies are generally separated from subthermocline eddies along the bifurcation latitude(~13°N) of the North Equatorial Current in the western tropical Pacific, which may be associated with different eddy energy sources and vertical eddy energy fluxes in subtropical and tropical gyres. Surface eddies have maximum swirl velocities of 8–9 cm s^(-1) and can extend to about 1500 m depth. Subthermocline eddies occur below 200 m, with their cores at about 400–600 m depth, and their maximum swirl velocities can reach 10 cm s^(-1). The other typical characteristic is that the meridional velocity component of the eddy is much larger than the zonal component. This characteristic might be due to more zonal eddy pairs(two eddies at the same latitude),which is also supported by the zonal wavelength(about 200 km) in the high-frequency meridional velocity component of the horizontal velocity. 展开更多
关键词 ocean eddies western tropical pacific Three-dimensional structure
原文传递
Two new species of the genus Munidopsis Whiteaves,1874(Crustacea:Anomura:Munidopsidae)from the Caroline Ridge,South of the Mariana Trench 被引量:1
8
作者 Dong DONG Xinzheng LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第5期1841-1853,共13页
The genus Munidopsis has high biodiversity in seamount habitats.In this study,two new Munidopsis species,Munidopsis ahyongi sp.nov.and Munidopsis carolinensis sp.nov.from the Caroline Ridge in the tropical western Pac... The genus Munidopsis has high biodiversity in seamount habitats.In this study,two new Munidopsis species,Munidopsis ahyongi sp.nov.and Munidopsis carolinensis sp.nov.from the Caroline Ridge in the tropical western Pacific Ocean were described.M.ahyongi sp.nov.is very similar to a group of species in the M.serricornis complex,but can be readily distinguished from the related species in having the oblique posterior orbital margins,2 spines on the lateral carapace margin,and a relatively longer rostral median spine.M.carolinensis sp.nov.is different from two related species primarily in having oblique frontal margins,blunt outer orbital angles,straight lateral margins of the rostrum,scale-like rugae on sternites 5-7,and less spinose pereopod 1(chelipeds,P1)merus and carpus.Aside from the morphological comparisons,DNA barcode analysis and phylogenetic analysis based on the cytochrome c oxidase subunit I gene(COI)were employed for the identification of these new species. 展开更多
关键词 Munidopsis new species SEAMOUNT tropical western pacific ocean DNA barcodes
下载PDF
Intensified Impact of the Equatorial QBO in August–September on the Northern Stratospheric Polar Vortex in December–January since the Late 1990s
9
作者 Haibo ZHOU Ke FAN 《Journal of Meteorological Research》 SCIE CSCD 2022年第5期703-717,共15页
This study reveals an intensified impact of the equatorial quasi-biennial oscillation(QBO)in August–September(QBO_AS)on the northern stratospheric polar vortex(SPV)in December–January(SPV_DJ)since the late 1990s.The... This study reveals an intensified impact of the equatorial quasi-biennial oscillation(QBO)in August–September(QBO_AS)on the northern stratospheric polar vortex(SPV)in December–January(SPV_DJ)since the late 1990s.The unstable relationship may be related to the differences in the deep convection anomaly over the tropical western Pacific and Indian Oceans in October–November(ON)related to the QBO_AS prior to and after the late 1990s.During 1998–2017,the easterly phase of the QBO_AS is accompanied by a colder tropical tropopause in ON,which enhances the deep convective activity over the tropical western Pacific and suppresses it over the Indian Ocean.The deep convection anomaly generates anomalous Rossby waves that propagate into the northern mid-to-high latitudes to constructively interfere with the climatological wavenumber-1 and wavenumber-2 components,thereby resulting in enhanced upward-propagating tropospheric planetary-scale waves and a weakened SPV_DJ anomaly.During1979–1997,however,the deep convection anomaly over the tropical western Pacific and Indian Oceans in ON related to the easterly phase of the QBO_AS is weaker and shifts eastward,which excites the anomalous Rossby waves to constructively/destructively interfere with the climatological wavenumber-1 component in the midlatitudes/high latitudes,thereby weakening the upward-propagating planetary-scale waves and leading to a weaker linkage with the SPV_DJ.Further analyses reveal that the unstable relationship may be associated with the interdecadal differences in deep convection over the tropical western Pacific and Indian Oceans and the upward-propagating tropospheric planetary-scale waves in ON. 展开更多
关键词 equatorial quasi-biennial oscillation stratospheric polar vortex deep convection over the tropical western pacific and Indian oceans planetary-scale waves
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部