There exists the most important REE-bearing phosphorite deposit in Southwest of China. Due to the fact that the REE are present in the form of ions in the lattices of collophanite or carbonatfluorapatite, the REE can ...There exists the most important REE-bearing phosphorite deposit in Southwest of China. Due to the fact that the REE are present in the form of ions in the lattices of collophanite or carbonatfluorapatite, the REE can be enriched in phosphate concentrate by flotation method. The phosphate concentrate is the main raw materials to produce phosphoric acid, therefore, it is significant to further investigate the distribution rule of REE in wet process. In this paper, the single leaching and recycled leaching technology were carried out to investigate the effect of various parameter conditions on distribution of REE in products. The REE compositions of products were analyzed by Inductively Coupled Plasma Emission Mass Spectrometry (ICP-MS) method. It was found that the acidic value of leaching liquor was the main effect factor on the distribution of REE in products. In single leaching stage, P2O5 concentration of leaching liquor slightly varied from 8% to about 10% when the excessive coefficient of sulphuric acid ranged from 1.03 to 1.05, and the distribution proportions of ∑REO in phosphoric acid solution was lower than 40%. However, in recycled leaching process(the condition similar to practical wet process), with an increase of P2O5 concentration as well as the acidic value of leaching liquor, the distribution proportions of ∑REO in phosphoric acid solution could be decreased to 2.56%. That is to say that under the condition similar to practical wet process, more than 90% of REE of phosphate concentrate became precipitation entering into the phosphogypsum product. This investigation will provide valid reference for reasonably recovering or reserving REE in wet-phosphoric acid process.展开更多
Phosphoric acid obtained by the wet process is laden with impurities which limit its use in fertilizers. To expand its range of use, various methods have been proposed to purify it which range from simple fading-clari...Phosphoric acid obtained by the wet process is laden with impurities which limit its use in fertilizers. To expand its range of use, various methods have been proposed to purify it which range from simple fading-clarification to more complex operations. These processes include essentially the liquid-liquid extraction, chemical precipitation, ion flotation, adsorption on activated carbon, ion exchange resins. However, the use of these techniques is limited to a number of disadvantages such as high operational cost, environmental pollution, complicated process, limited effectiveness, etc.. Our contribution for this domain (purification of wet-phosphoric acid) consists to use clays which could be adsorbent materials alternative to both economic and less polluting. These are phyllosilicates which have a large adsorption capacity due to their large specific surface and their surface charge. In this study, we will detail the processes which present great importance for the treatment of wet phosphoric acid.展开更多
Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation ex...Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation exchange resin for iron removal from phosphoric acid. The specific surface area and the total exchange capacity of resin were 8.91 m2·g-1 and 5.18 mmol·g-1, respectively. The sorption mechanism was determined by FTIR and XPS and the results indicated that iron was combined with-SO3 H in resin. The removal process was studied as a function of temperature, H3 PO4 content and mass ratio between resin and solution. The unit mass of resin to remove iron was 0.058 g·g-1 resin when the operating parameters were T = 50 ℃, H3 PO4 content = 27.61 wt%and S/L = 0.1, respectively. Kinetics study demonstrated that pseudo-second-order reaction model fits this study best and the calculated activation energy of overall reaction is 29.10 kJ·mol-1. The overall reaction process was mainly controlled by pore diffusion.展开更多
基金the Natural Science Foundation of Guizhou Province (QianKeHe J[2005]2098)
文摘There exists the most important REE-bearing phosphorite deposit in Southwest of China. Due to the fact that the REE are present in the form of ions in the lattices of collophanite or carbonatfluorapatite, the REE can be enriched in phosphate concentrate by flotation method. The phosphate concentrate is the main raw materials to produce phosphoric acid, therefore, it is significant to further investigate the distribution rule of REE in wet process. In this paper, the single leaching and recycled leaching technology were carried out to investigate the effect of various parameter conditions on distribution of REE in products. The REE compositions of products were analyzed by Inductively Coupled Plasma Emission Mass Spectrometry (ICP-MS) method. It was found that the acidic value of leaching liquor was the main effect factor on the distribution of REE in products. In single leaching stage, P2O5 concentration of leaching liquor slightly varied from 8% to about 10% when the excessive coefficient of sulphuric acid ranged from 1.03 to 1.05, and the distribution proportions of ∑REO in phosphoric acid solution was lower than 40%. However, in recycled leaching process(the condition similar to practical wet process), with an increase of P2O5 concentration as well as the acidic value of leaching liquor, the distribution proportions of ∑REO in phosphoric acid solution could be decreased to 2.56%. That is to say that under the condition similar to practical wet process, more than 90% of REE of phosphate concentrate became precipitation entering into the phosphogypsum product. This investigation will provide valid reference for reasonably recovering or reserving REE in wet-phosphoric acid process.
文摘Phosphoric acid obtained by the wet process is laden with impurities which limit its use in fertilizers. To expand its range of use, various methods have been proposed to purify it which range from simple fading-clarification to more complex operations. These processes include essentially the liquid-liquid extraction, chemical precipitation, ion flotation, adsorption on activated carbon, ion exchange resins. However, the use of these techniques is limited to a number of disadvantages such as high operational cost, environmental pollution, complicated process, limited effectiveness, etc.. Our contribution for this domain (purification of wet-phosphoric acid) consists to use clays which could be adsorbent materials alternative to both economic and less polluting. These are phyllosilicates which have a large adsorption capacity due to their large specific surface and their surface charge. In this study, we will detail the processes which present great importance for the treatment of wet phosphoric acid.
基金Supported by the National Basic Research Program of China(2016YFD0200404)
文摘Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation exchange resin for iron removal from phosphoric acid. The specific surface area and the total exchange capacity of resin were 8.91 m2·g-1 and 5.18 mmol·g-1, respectively. The sorption mechanism was determined by FTIR and XPS and the results indicated that iron was combined with-SO3 H in resin. The removal process was studied as a function of temperature, H3 PO4 content and mass ratio between resin and solution. The unit mass of resin to remove iron was 0.058 g·g-1 resin when the operating parameters were T = 50 ℃, H3 PO4 content = 27.61 wt%and S/L = 0.1, respectively. Kinetics study demonstrated that pseudo-second-order reaction model fits this study best and the calculated activation energy of overall reaction is 29.10 kJ·mol-1. The overall reaction process was mainly controlled by pore diffusion.