The paper deals with the fluid field of web forming in wet-laid non-woven production.The influence of the turbulent flow on blending fiber and occluded fluid produced in pulp flow has been discussed in theory and prac...The paper deals with the fluid field of web forming in wet-laid non-woven production.The influence of the turbulent flow on blending fiber and occluded fluid produced in pulp flow has been discussed in theory and practice.The suitable use of the imported velocity of pulp is very important in producing wet-laid products of good quality.展开更多
A novel vertical actuator based on electrowetting on dielectric (EWOD) was designed, analyzed and simulated. Modeling results indicated that the vertical driving force of the actuator obeyed a second order polynomia...A novel vertical actuator based on electrowetting on dielectric (EWOD) was designed, analyzed and simulated. Modeling results indicated that the vertical driving force of the actuator obeyed a second order polynomial of applied voltage, which was verified by Covent_ware 2006. As a resuit, the vertical driving force of the EWOD actuator with a 1.1 nL droplet and a 1.75 μm thick polymer was about 0.5 μN under an applied voltage 100V which was comparable to that of the electrostatic actuators. Moreover, the noise from plane forces we analyzed and simulated was very low. Therefore, we made a conclusion that the EWOD actuator can be used in MEMS transducer.展开更多
Elastocapillary phenomena involving elastic deformation of solid structures coupled with capillary effects of liquid droplets/films can be observed in a diversity of fields, e.g., biology and microelectromechanical sy...Elastocapillary phenomena involving elastic deformation of solid structures coupled with capillary effects of liquid droplets/films can be observed in a diversity of fields, e.g., biology and microelectromechanical systems (MEMS). Understanding the physical mechanisms underlying these phenomena is of great interest for the design of new materials and devices by utilizing the effects of surface tension at micro and nano scales. In this paper, some recent developments in the investigations on elastocapillary phenomena are briefly reviewed. Especially, we consider the deformation, adhesion, self-assembly, buckling and wrinkling of ma- terials and devices induced by surface tensions or capillary forces. The main attention is paid to the experimental results of these phenomena and the theoretical analysis meth- ods based on continuum mechanics. Additionally, the applications of these studies in the fields of MEMS, micro/nanometrology, and biomimetic design of advanced materials and devices are discussed.展开更多
Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and was...Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and wastewaters,and its high content jeopardizes the efficacy of Advanced oxidation process(AOPs).Thus,a novel chlorine ion resistant catalyst Bsite Ru doped LaFe_(1-x)Ru_(x)O_(3-)δin CWAO treatment of chlorine ion wastewater was examined.Especially,LaFe_(0.85)Ru_(0.15)O_(3-δ)was 45.5% better than that of the 6%RuO_(2)@TiO_(2)(commercial carrier)on total organic carbon(TOC)removal.Also,doped catalysts LaFe_(1-x)Ru_(x)O_(3-)δshowed better activity than supported catalysts RuO_(2)@LaFeO_(3) and RuO_(2)@TiO_(2) with the same Ru content.Moreover,LaFe_(0.85)Ru_(0.15)O_(3-)δhas novel chlorine ion resistance no matter the concentration of Cl^(−) and no Ru dissolves after the reaction.X-ray diffraction(XRD)refinement,X-ray photoelectron spectroscopy(XPS),transmission electron microscope(TEM),and X-ray absorption fine structure(XAFS)measurements verified the structure of LaFe_(0.85)Ru_(0.15)O_(3-)δ.Kinetic data and density functional theory(DFT)proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions.The existence of Fe in LaFe_(0.85)Ru_(0.15)O_(3-)δcould adsorb chlorine ion(catalytic activity inhibitor),which can protect the Ru site and other active oxygen species to exert catalytic activity.This work is essential for the development of chloride-resistant catalyst in CWAO.展开更多
In an effort to improve the performance of superconductors in the field and high temperatures it is important to study the superconducting mechanism. For this reason, the cation substitution can be conducted. One of t...In an effort to improve the performance of superconductors in the field and high temperatures it is important to study the superconducting mechanism. For this reason, the cation substitution can be conducted. One of the high Tc superconductors Gd1Ba2Cu3O7−δ phase with Sr substitution has been synthesized, i.e. Gd1(Ba2−xSrx)Cu3O7−δ compound. The sample was synthesized by using a solid-state reaction method with a wet mixing, sintered for 12 hours at temperature 900°C. The synthesis results are characterized by using XRD. The results of Match-3 software analysis showed high (higher 85%) Gd1Ba2Cu3O7−δ phase was formed. The Sr substitution causes changes to the structure, i.e. the lattice parameters a, b and c, where the orthorhombicity tends to decrease with increasing Sr content. Refinement results show that based on the oxygen occupancy, the total oxygen content tends to increase.展开更多
At the global scale,atmospheric inputs of nitrogen are an important source of the new nitrogen that supports new marine production,especially in oligotrophic open oceans and marginal seas.This study reports quantities...At the global scale,atmospheric inputs of nitrogen are an important source of the new nitrogen that supports new marine production,especially in oligotrophic open oceans and marginal seas.This study reports quantities of atmospheric deposition of dissolved inorganic nitrogen(DIN)to the largest marginal sea in the North Pacific(the oligotrophic South China Sea,SCS)based primarily on rainwater sampling in the open northwestern region(Yongxing Island)from 2013 to 2015,and aerosol sampling from the SCS basin in June 2017.Atmospheric wet and dry deposition of DIN and their potential contributions to productivity were estimated.The volume-weighted mean rainwater concentrations during the wet and dry seasons were 4.9 and 18.1μmol L-1 for N+N(NO3-+NO2-),and 5.7 and 4.0μmol L-1 for NH4+,respectively.Rainwater concentrations of DIN were lower in the marginal seas than in the open ocean.The aerosol NO3-concentration was 1.15±1.18μg m-3 during the wet season,which is slightly lower than reported for the East China Sea and East Sea,but higher than in the Arabian Sea.Monthly wet and dry deposition rates ranged from 0.4-3.9 and 0.4-1.2 mmol m-2 mon-1 for NO3-,and 0.2-1.3 and 0.01-0.02 mmol m-2 mon-1 for NH4+,respectively.The annual wet and dry deposition fluxes of DIN were estimated to be 16.8 and 10.1 mmol m-2yr-1,respectively.Compared to other marginal seas,the SCS receives less atmospheric NO3-inputs than the Yellow Sea,East China Sea,East Sea,and northeastern Mediterranean Sea.The total atmospheric DIN deposition may account for 1.8-11.1%of the nitrogen supporting new production and 0.7-1.8%of the nitrogen supporting primary production.展开更多
文摘The paper deals with the fluid field of web forming in wet-laid non-woven production.The influence of the turbulent flow on blending fiber and occluded fluid produced in pulp flow has been discussed in theory and practice.The suitable use of the imported velocity of pulp is very important in producing wet-laid products of good quality.
文摘A novel vertical actuator based on electrowetting on dielectric (EWOD) was designed, analyzed and simulated. Modeling results indicated that the vertical driving force of the actuator obeyed a second order polynomial of applied voltage, which was verified by Covent_ware 2006. As a resuit, the vertical driving force of the EWOD actuator with a 1.1 nL droplet and a 1.75 μm thick polymer was about 0.5 μN under an applied voltage 100V which was comparable to that of the electrostatic actuators. Moreover, the noise from plane forces we analyzed and simulated was very low. Therefore, we made a conclusion that the EWOD actuator can be used in MEMS transducer.
基金supported by the National Natural Science Foundation of China (10802099 and 10732050)the Doctoral Fund of Ministry of Education of China (200804251520)+1 种基金973 Program(2012CB934101)the Natural Science Foundation of Shandong Province (ZR2009AQ006)
文摘Elastocapillary phenomena involving elastic deformation of solid structures coupled with capillary effects of liquid droplets/films can be observed in a diversity of fields, e.g., biology and microelectromechanical systems (MEMS). Understanding the physical mechanisms underlying these phenomena is of great interest for the design of new materials and devices by utilizing the effects of surface tension at micro and nano scales. In this paper, some recent developments in the investigations on elastocapillary phenomena are briefly reviewed. Especially, we consider the deformation, adhesion, self-assembly, buckling and wrinkling of ma- terials and devices induced by surface tensions or capillary forces. The main attention is paid to the experimental results of these phenomena and the theoretical analysis meth- ods based on continuum mechanics. Additionally, the applications of these studies in the fields of MEMS, micro/nanometrology, and biomimetic design of advanced materials and devices are discussed.
基金supported by the Natural Science Foundation of Liaoning Province (No. 2020-BS-012)the National Natural Science Foundation of China (No. 51878643)+2 种基金the Dalian Institute of Chemical Physics & Qingdao Institute of Bioenergy and Bioprocess Technology (DICP&QIBEBT) (No. UN201809)the Scientific Research Common Program of Beijing Municipal Commission of Education (No. KM202010017006)Talents Project of Beijing Organization Department (No. 2018000020124G091)。
文摘Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and wastewaters,and its high content jeopardizes the efficacy of Advanced oxidation process(AOPs).Thus,a novel chlorine ion resistant catalyst Bsite Ru doped LaFe_(1-x)Ru_(x)O_(3-)δin CWAO treatment of chlorine ion wastewater was examined.Especially,LaFe_(0.85)Ru_(0.15)O_(3-δ)was 45.5% better than that of the 6%RuO_(2)@TiO_(2)(commercial carrier)on total organic carbon(TOC)removal.Also,doped catalysts LaFe_(1-x)Ru_(x)O_(3-)δshowed better activity than supported catalysts RuO_(2)@LaFeO_(3) and RuO_(2)@TiO_(2) with the same Ru content.Moreover,LaFe_(0.85)Ru_(0.15)O_(3-)δhas novel chlorine ion resistance no matter the concentration of Cl^(−) and no Ru dissolves after the reaction.X-ray diffraction(XRD)refinement,X-ray photoelectron spectroscopy(XPS),transmission electron microscope(TEM),and X-ray absorption fine structure(XAFS)measurements verified the structure of LaFe_(0.85)Ru_(0.15)O_(3-)δ.Kinetic data and density functional theory(DFT)proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions.The existence of Fe in LaFe_(0.85)Ru_(0.15)O_(3-)δcould adsorb chlorine ion(catalytic activity inhibitor),which can protect the Ru site and other active oxygen species to exert catalytic activity.This work is essential for the development of chloride-resistant catalyst in CWAO.
基金This report is part of the fundamental research report with contract No.486 127/UN14.2/PNL.01.03.00/2016.
文摘In an effort to improve the performance of superconductors in the field and high temperatures it is important to study the superconducting mechanism. For this reason, the cation substitution can be conducted. One of the high Tc superconductors Gd1Ba2Cu3O7−δ phase with Sr substitution has been synthesized, i.e. Gd1(Ba2−xSrx)Cu3O7−δ compound. The sample was synthesized by using a solid-state reaction method with a wet mixing, sintered for 12 hours at temperature 900°C. The synthesis results are characterized by using XRD. The results of Match-3 software analysis showed high (higher 85%) Gd1Ba2Cu3O7−δ phase was formed. The Sr substitution causes changes to the structure, i.e. the lattice parameters a, b and c, where the orthorhombicity tends to decrease with increasing Sr content. Refinement results show that based on the oxygen occupancy, the total oxygen content tends to increase.
基金supported by the National Basic R&D Program of China(Grant No.2015CB954001)the National Natural Science Foundation of China(Grant No.41876080)。
文摘At the global scale,atmospheric inputs of nitrogen are an important source of the new nitrogen that supports new marine production,especially in oligotrophic open oceans and marginal seas.This study reports quantities of atmospheric deposition of dissolved inorganic nitrogen(DIN)to the largest marginal sea in the North Pacific(the oligotrophic South China Sea,SCS)based primarily on rainwater sampling in the open northwestern region(Yongxing Island)from 2013 to 2015,and aerosol sampling from the SCS basin in June 2017.Atmospheric wet and dry deposition of DIN and their potential contributions to productivity were estimated.The volume-weighted mean rainwater concentrations during the wet and dry seasons were 4.9 and 18.1μmol L-1 for N+N(NO3-+NO2-),and 5.7 and 4.0μmol L-1 for NH4+,respectively.Rainwater concentrations of DIN were lower in the marginal seas than in the open ocean.The aerosol NO3-concentration was 1.15±1.18μg m-3 during the wet season,which is slightly lower than reported for the East China Sea and East Sea,but higher than in the Arabian Sea.Monthly wet and dry deposition rates ranged from 0.4-3.9 and 0.4-1.2 mmol m-2 mon-1 for NO3-,and 0.2-1.3 and 0.01-0.02 mmol m-2 mon-1 for NH4+,respectively.The annual wet and dry deposition fluxes of DIN were estimated to be 16.8 and 10.1 mmol m-2yr-1,respectively.Compared to other marginal seas,the SCS receives less atmospheric NO3-inputs than the Yellow Sea,East China Sea,East Sea,and northeastern Mediterranean Sea.The total atmospheric DIN deposition may account for 1.8-11.1%of the nitrogen supporting new production and 0.7-1.8%of the nitrogen supporting primary production.