期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Depth profiling of arsenian pyrite in Carlin-type ores through wet chemistry
1
作者 Meizhi Yang Quan Wan +4 位作者 Xin Nie Suxing Luo Yuhong Fu Ping Zeng Wenqi Luo 《Acta Geochimica》 EI CAS CSCD 2023年第2期256-265,共10页
Enrichment of As and Au at the overgrowth rims of arsenian pyrite is a distinctive feature of Carlin-type gold ores.Revealing distribution of such key elements in high resolution is of fundamental importance yet often... Enrichment of As and Au at the overgrowth rims of arsenian pyrite is a distinctive feature of Carlin-type gold ores.Revealing distribution of such key elements in high resolution is of fundamental importance yet often proves challenging.In this study,repeated non-oxidative acid etching of ore samples from Shuiyindong gold deposit was applied to enable elemental depth profiling of goldbearing arsenian pyrite grains.ICP-OES and AAS were used to determine the dissolved Fe,As,and Au concentrations in each of the etching solutions,and XPS was carried out to exam the etched mineral surfaces.In contrast to conventional ion beam etching that may cause substantial sample damage,our acid etching method does not seem to significantly alter the composition and chemical state of the samples.The etched depths directly converted from the measured elemental concentrations can reproducibly reach a very high resolution of~1 nm,and can be conveniently controlled through varying the etching time.While the Fe and As depth profiles consistently reflect the surface oxidation property of arsenian pyrite,the Au profile displaying an obvious upward trend reveals the ore fluid evolution at the late stage of mineralization.Based on our experimental results,we demonstrate that our wet chemistry method is capable of effective depth profiling of gold ore and perhaps other geological samples,with advantages surpassing many instrumental techniques including negligible sample damage,nanoscale resolution as well as isotropic etching. 展开更多
关键词 wet chemistry Acid etching Depth profiling Carlin-type gold deposits Arsenian pyrite
下载PDF
Different surface modification methods and coating materials of zinc metal anode 被引量:7
2
作者 Feng Tao Yong Liu +6 位作者 Xinyuan Ren Jing Wang Yazhou Zhou Yingjie Miao Fengzhang Ren Shizhong Wei Jianmin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期397-412,I0011,共17页
Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Neverthel... Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications. 展开更多
关键词 Zn-ion batteries Zinc metal anode Surface modification Solvent casting method wet chemistry method
下载PDF
Facile filling of metal particles in small carbon nanotubes for catalysis 被引量:3
3
作者 Hongbo Zhang Xiulian Pan Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期251-256,共6页
A versatile wet chemistry method is developed for filling of subnanometer sized metal particles in carbon nanotubes with a diameter smaller than 1.5 nm. As an example, we showed that a confined bi-component Pd-V catal... A versatile wet chemistry method is developed for filling of subnanometer sized metal particles in carbon nanotubes with a diameter smaller than 1.5 nm. As an example, we showed that a confined bi-component Pd-V catalyst exhibit a higher benzene hydroxylation activity compared with that within multi-walled carbon nanotubes. 展开更多
关键词 double-walled carbon nanotubes (DWCNTs) single-walled carbon nanotubes (SWCNTs) nanoparticles wet chemistry benzene hydroxyla-tion
下载PDF
Ln3+(Ln=Eu,Dy)-doped Sr2CeO4 fine phosphor particles:Wet chemical preparation,energy transfer and tunable luminescence 被引量:7
4
作者 Na Gao Yanfei Yang +4 位作者 Shikao Shi Jiye Wang Shuping Wang Jibiao Li Lianshe Fu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第12期1273-1280,共8页
The Sr2 CeO4:Ln3+(Ln=Eu,Dy)fine phosphor particles were prepared by a facile wet chemical approach,in which the consecutive hydrothermal-combustion reaction was performed.The doping of Ln3+into Sr2 CeO4 has little inf... The Sr2 CeO4:Ln3+(Ln=Eu,Dy)fine phosphor particles were prepared by a facile wet chemical approach,in which the consecutive hydrothermal-combustion reaction was performed.The doping of Ln3+into Sr2 CeO4 has little influence on the structure of host,and the as-prepared samples display wellcrystallized spherical or elliptical shape with an average particle size at about 100-200 nm.For Eu3+ions-doped Sr2 CeO4,with the increase of Eu3+-doping concentration,the blue light emission band with the maximum at 468 nm originating from a Ce4+→O2-charge transfer of the host decreases obviously and the characteristic red light emission of Eu3+(5 D0→7 F2 transition at 618 nm)is enhanced gradually.Simultaneously,the fluorescent lifetime of the broadband emission of Sr2 CeO4 decreases with the doping of Eu3+,indicating an efficient energy transfer from the host to the doping Eu3+ions.The ene rgy transfer efficiency from the host to Eu3+was investigated in detail,and the emitting color of Sr2 CeO4:Eu3+can be easily tuned from blue to red by varying the doping concentration of Eu3+ions.Moreover,the luminescence of Dy3+-doped Sr2 CeO4 was also studied.Similar energy transfer pheno menon can be observed,and the incorporation of Dy3+into Sr2 CeO4 host leads to the characteristic emission of 4 F9/2→6 H15/2(488 nm,blue light)and 4 F9/2→6 H13/2(574 nm,yellow light)of Dy3+.The Sr2 CeO4:Ln3+fine particles with tunable luminescence are quite beneficial for its potential applications in the optoelectronic fields. 展开更多
关键词 wet chemistry preparation SR2CEO4 Ln3+ion PHOSPHOR LUMINESCENCE Energy transfer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部