A variety of dust control methods are often applied in coal mines,among which the application of wet scrubbers has proven to be an efficient technology for the removal of dust in airstreams,rather than diluting or con...A variety of dust control methods are often applied in coal mines,among which the application of wet scrubbers has proven to be an efficient technology for the removal of dust in airstreams,rather than diluting or confining the dust.In this paper,a wet scrubber design was developed.Based on a self-designed experimental test platform,the total dust concentration,respirable dust concentration,air volume,and average pressure drops of wet scrubbers with 12,16,20,and 24 blades were measured under different water intake conditions.The results show that the different water intake levels have only minimal effects on the air volume of the wet scrubbers.However,increased water intake had improved the dust removal efficiency of the wet scrubbers with the same number of blades.The wet scrubber with 16 blades was found to have the best dust removal efficiency at a water intake level of 1.35 m^(3)/h.Its total dust and respirable dust removal efficiency reached 96.81%and 95.59%,respectively.The air volume was 200.4 m^(3)/min,and the average pressure drop was determined to be 169.4 Pa.In addition,when the wet scrubber with 16 blades was applied in a coal preparation plant in China's Shanxi Province,it was observed that the total dust concentration had fallen below 8.1 mg/m^(3),and the respirable dust concentration had fallen below 5.9 mg/m^(3).Therefore,the results obtained in this research investigation provide important references for the use of wet scrubbers to improve coal production environmental conditions.展开更多
Based on the analysis results of the dust size distribution of flue gas from Baosteel's short-flow (BSSF) slag processing system and the mechanism of the wet scrubber,a wet scrubber system was designed and installe...Based on the analysis results of the dust size distribution of flue gas from Baosteel's short-flow (BSSF) slag processing system and the mechanism of the wet scrubber,a wet scrubber system was designed and installed in the No. 1 BSSF slag processing system at Baosteel. The results show that the dust removal efficiency of the previous system that had conventional water nozzles was only 69% with a liquid-gas ratio of 0.79 L/m^3 ,while the dust removal efficiency reached 94% when three sets of high-efficiency dual phase spray guns were installed inside both the flue and the chimney. For the latter system,the liquid-gas ratio was 0. 84 L/m^3 ,and the dust concentration in the cleaned emissions reduced to less than 40 mg/m^3.展开更多
This paper presents the hydrodynamics of the wet scrubber coupled to a pilot CFB incineration facility. The scrubber was operated using tap water as a scrubbing liquid. The outlet liquid flow rate, Qo, and accumulatio...This paper presents the hydrodynamics of the wet scrubber coupled to a pilot CFB incineration facility. The scrubber was operated using tap water as a scrubbing liquid. The outlet liquid flow rate, Qo, and accumulation rate, Qa, strongly depend on the inlet liquid flow rate, Qin, with different profiles. At higher Qin values, Qo stabilizes, leading to higher Qa and finally flooding. The values of Qa were higher than Qo except for Qin ranging between 0.53 and 0.72 L/s (safe operating range) in which Qa ≌ Qo and Qa = Qin/2. The outlet-to-inlet liquid flow rate ratio, Qo/Qin decreased for Qin > 0.53 L/s. The increase in the accumulation-to-inlet liquid flow rate ratio, Qa/Qin, at higher Qin indicates a change in flow regime towards flooding, accompanied by an abrupt increase in the height of accumulating liquid, Ha. The difference between Qa/Qin and Qo/Qin (denoted as, ΔQao/Qin), shows a minimum close to zero in the safe operating range. The gas flow rate towards the wet scrubber had slight effect on Qo and Qa when Qin was maintained constant. The ratio Qo/Qin decreased slightly with Ha/Ht irrespective of gas velocity. Changing the liquid-to-gas ratio, L/G and Qin strongly affects the maximum and minimum values of Qo/Qin and Qa/Qin.展开更多
Previous research on wet scrubbers has only studied highly acidic scrubbing solutions because of their high ammonia capture efficiencies; however, the high acidity created practical problems. Lower acidity solutions w...Previous research on wet scrubbers has only studied highly acidic scrubbing solutions because of their high ammonia capture efficiencies; however, the high acidity created practical problems. Lower acidity solutions would reduce corrosion, maintenance, and cost; however, designers may need to use strategies for increasing scrubber effectiveness, such as using lower air velocities. The objective of this studywas to determine if a spray scrubber with slightly acidic and higher p H scrubbing solution (pH from 2 to 8) could effectively remove NH3 from NH3 laden air (such as animal building exhaust air), and also collect this valuable resource for rater use as a fertilizer. A bench-scale spray wet scrubber treated 20 ppmv NH3/air mixture in a countercurrent contact chamber. First, the solution pH was varied from 2 to 8while maintaining constant air velocity at 1.3 m. s-1. Next, air velocity was increased (2and 3 m.s-1) while solution pH remained constant at pH6. At 1.3 m.s -1, NH3 removal efficiencies ranged between 49.0% (pH8) and 84.3% (pH2). This study has shown that slightly acidic scrubbing solutions are a practical means of removing ammonia from air especially if the scrubber is designed to increase collisions between solution droplets and NH3 molecules. The NH3 removed from the air was held in solution as NH4+ and accumulates over time so the solution should be an excellent fertilizer.展开更多
The use of air scrubbers to reduce ammonia (NH<sub>3</sub>) emissions from buildings on pig farms is one of the most promising techniques in the GÖteborg protocol and other European regulations includ...The use of air scrubbers to reduce ammonia (NH<sub>3</sub>) emissions from buildings on pig farms is one of the most promising techniques in the GÖteborg protocol and other European regulations including the Industrial Emission Directive. In France, some air scrubbers are currently used on pig farms, mainly to reduce odours from livestock buildings. However, recent research revealed the production of N<sub>2</sub>O resulting from the treatment of air from pig buildings. In this context, a two-month study was conducted on a pig farm with 750 places for fattening pigs to check the abatement of NH3 emissions and to assess the possible production of N<sub>2</sub>O during treatment of exhausted air from buildings housing fattening pigs by a air scrubber. Concentrations of NH<sub>3</sub> and N<sub>2</sub>O in the inlet and outlet air of the scrubber were continuously monitored using an Innova 1412 infrared analyzer. With the scrubber operating parameters (airflow, design, size), our results confirmed the production of N<sub>2</sub>O in the order of 5% of NH<sub>3</sub>-N reduced. N<sub>2</sub>O was produced by biological nitrification and/or denitrification inside the air scrubber. Statistical analysis (Pearson’s test) showed that the production of N<sub>2</sub>O was strongly influenced by the rate of airflow and the outside temperature. The abatement of NH<sub>3</sub> emissions from the building was only 33%, i.e. much lower than the 70% - 90% usually cited in the literature.展开更多
Based on the experimental data by a full scale test model and the relevant existing achievements, four new concepts of group dust scrubbers were designed in the paper. The new dust scrubbers consist of two to four com...Based on the experimental data by a full scale test model and the relevant existing achievements, four new concepts of group dust scrubbers were designed in the paper. The new dust scrubbers consist of two to four common dust separators in series: wet fan, wet Venturi and foam filter bed. Wetting and foaming agents are used to increase the efficiency of dust separation. High efficiency is not required for each part of the group dust scrubbers, but the whole system has a high working reliability. All parts of the group dust scrubbers have the most suitable separating efficiency for different size and concentration of dust particles in airflow, according to their technical features. Four group dust scrubbers have a high efficiency from 94.4% to 99.7% for separating respirable dust at a rational cost.展开更多
基金supported by the Shanxi Province Colleges and Universities Science and Technology Achievement Transformation and Cultivation Project(2020CG008).
文摘A variety of dust control methods are often applied in coal mines,among which the application of wet scrubbers has proven to be an efficient technology for the removal of dust in airstreams,rather than diluting or confining the dust.In this paper,a wet scrubber design was developed.Based on a self-designed experimental test platform,the total dust concentration,respirable dust concentration,air volume,and average pressure drops of wet scrubbers with 12,16,20,and 24 blades were measured under different water intake conditions.The results show that the different water intake levels have only minimal effects on the air volume of the wet scrubbers.However,increased water intake had improved the dust removal efficiency of the wet scrubbers with the same number of blades.The wet scrubber with 16 blades was found to have the best dust removal efficiency at a water intake level of 1.35 m^(3)/h.Its total dust and respirable dust removal efficiency reached 96.81%and 95.59%,respectively.The air volume was 200.4 m^(3)/min,and the average pressure drop was determined to be 169.4 Pa.In addition,when the wet scrubber with 16 blades was applied in a coal preparation plant in China's Shanxi Province,it was observed that the total dust concentration had fallen below 8.1 mg/m^(3),and the respirable dust concentration had fallen below 5.9 mg/m^(3).Therefore,the results obtained in this research investigation provide important references for the use of wet scrubbers to improve coal production environmental conditions.
文摘Based on the analysis results of the dust size distribution of flue gas from Baosteel's short-flow (BSSF) slag processing system and the mechanism of the wet scrubber,a wet scrubber system was designed and installed in the No. 1 BSSF slag processing system at Baosteel. The results show that the dust removal efficiency of the previous system that had conventional water nozzles was only 69% with a liquid-gas ratio of 0.79 L/m^3 ,while the dust removal efficiency reached 94% when three sets of high-efficiency dual phase spray guns were installed inside both the flue and the chimney. For the latter system,the liquid-gas ratio was 0. 84 L/m^3 ,and the dust concentration in the cleaned emissions reduced to less than 40 mg/m^3.
文摘This paper presents the hydrodynamics of the wet scrubber coupled to a pilot CFB incineration facility. The scrubber was operated using tap water as a scrubbing liquid. The outlet liquid flow rate, Qo, and accumulation rate, Qa, strongly depend on the inlet liquid flow rate, Qin, with different profiles. At higher Qin values, Qo stabilizes, leading to higher Qa and finally flooding. The values of Qa were higher than Qo except for Qin ranging between 0.53 and 0.72 L/s (safe operating range) in which Qa ≌ Qo and Qa = Qin/2. The outlet-to-inlet liquid flow rate ratio, Qo/Qin decreased for Qin > 0.53 L/s. The increase in the accumulation-to-inlet liquid flow rate ratio, Qa/Qin, at higher Qin indicates a change in flow regime towards flooding, accompanied by an abrupt increase in the height of accumulating liquid, Ha. The difference between Qa/Qin and Qo/Qin (denoted as, ΔQao/Qin), shows a minimum close to zero in the safe operating range. The gas flow rate towards the wet scrubber had slight effect on Qo and Qa when Qin was maintained constant. The ratio Qo/Qin decreased slightly with Ha/Ht irrespective of gas velocity. Changing the liquid-to-gas ratio, L/G and Qin strongly affects the maximum and minimum values of Qo/Qin and Qa/Qin.
文摘Previous research on wet scrubbers has only studied highly acidic scrubbing solutions because of their high ammonia capture efficiencies; however, the high acidity created practical problems. Lower acidity solutions would reduce corrosion, maintenance, and cost; however, designers may need to use strategies for increasing scrubber effectiveness, such as using lower air velocities. The objective of this studywas to determine if a spray scrubber with slightly acidic and higher p H scrubbing solution (pH from 2 to 8) could effectively remove NH3 from NH3 laden air (such as animal building exhaust air), and also collect this valuable resource for rater use as a fertilizer. A bench-scale spray wet scrubber treated 20 ppmv NH3/air mixture in a countercurrent contact chamber. First, the solution pH was varied from 2 to 8while maintaining constant air velocity at 1.3 m. s-1. Next, air velocity was increased (2and 3 m.s-1) while solution pH remained constant at pH6. At 1.3 m.s -1, NH3 removal efficiencies ranged between 49.0% (pH8) and 84.3% (pH2). This study has shown that slightly acidic scrubbing solutions are a practical means of removing ammonia from air especially if the scrubber is designed to increase collisions between solution droplets and NH3 molecules. The NH3 removed from the air was held in solution as NH4+ and accumulates over time so the solution should be an excellent fertilizer.
文摘The use of air scrubbers to reduce ammonia (NH<sub>3</sub>) emissions from buildings on pig farms is one of the most promising techniques in the GÖteborg protocol and other European regulations including the Industrial Emission Directive. In France, some air scrubbers are currently used on pig farms, mainly to reduce odours from livestock buildings. However, recent research revealed the production of N<sub>2</sub>O resulting from the treatment of air from pig buildings. In this context, a two-month study was conducted on a pig farm with 750 places for fattening pigs to check the abatement of NH3 emissions and to assess the possible production of N<sub>2</sub>O during treatment of exhausted air from buildings housing fattening pigs by a air scrubber. Concentrations of NH<sub>3</sub> and N<sub>2</sub>O in the inlet and outlet air of the scrubber were continuously monitored using an Innova 1412 infrared analyzer. With the scrubber operating parameters (airflow, design, size), our results confirmed the production of N<sub>2</sub>O in the order of 5% of NH<sub>3</sub>-N reduced. N<sub>2</sub>O was produced by biological nitrification and/or denitrification inside the air scrubber. Statistical analysis (Pearson’s test) showed that the production of N<sub>2</sub>O was strongly influenced by the rate of airflow and the outside temperature. The abatement of NH<sub>3</sub> emissions from the building was only 33%, i.e. much lower than the 70% - 90% usually cited in the literature.
基金FoundationofChinaScholarshipCouncilforAbroad! (No .975 14 0 0 8)
文摘Based on the experimental data by a full scale test model and the relevant existing achievements, four new concepts of group dust scrubbers were designed in the paper. The new dust scrubbers consist of two to four common dust separators in series: wet fan, wet Venturi and foam filter bed. Wetting and foaming agents are used to increase the efficiency of dust separation. High efficiency is not required for each part of the group dust scrubbers, but the whole system has a high working reliability. All parts of the group dust scrubbers have the most suitable separating efficiency for different size and concentration of dust particles in airflow, according to their technical features. Four group dust scrubbers have a high efficiency from 94.4% to 99.7% for separating respirable dust at a rational cost.