Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand...Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.展开更多
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel...In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.展开更多
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ...Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).展开更多
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess...Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.展开更多
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr...The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.展开更多
A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low opti...A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low optimization precision.Firstly,the population is initialized by introducing the theory of good point set,which increases the randomness and diversity of the population and lays the foundation for the global optimization of the algorithm.Then,a novel linearly update equation of convergence factor is designed to coordinate the abilities of exploration and exploitation.At the same time,the global exploration and local exploitation capabilities are improved through the siege mechanism of Harris Hawks optimization algorithm.Finally,the simulation experiments are conducted on the 6 benchmark functions and Wilcoxon rank sum test to evaluate the optimization performance of the improved algorithm.The experimental results show that the proposed algorithm has more significant improvement in optimization accuracy,convergence speed and robustness than the comparison algorithm.展开更多
Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used ...Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used to solve practical engineering optimization problems.However,with the increased dimensions,higher requirements are put forward for algorithm performance.The double population whale optimization algorithm with distributed collaboration and reverse learning ability(DCRWOA)is proposed to solve the slow convergence speed and unstable search accuracy of the WOA algorithm in optimization problems.In the DCRWOA algorithm,the novel double population search strategy is constructed.Meanwhile,the reverse learning strategy is adopted in the population search process to help individuals quickly jump out of the non-ideal search area.Numerical experi-ments are carried out using standard test functions with different dimensions(10,50,100,200).The optimization case of shield construction parameters is also used to test the practical application performance of the proposed algo-rithm.The results show that the DCRWOA algorithm has higher optimization accuracy and stability,and the convergence speed is significantly improved.Therefore,the proposed DCRWOA algorithm provides a better method for solving practical optimization problems.展开更多
Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminar...Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops.Manually identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations.An atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural production.This paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem borers.Because of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing images.The community-based cumulative algorithm was used to classify the pests in the existing system.The proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in agricul-ture.The Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification accuracy.Support Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are interested.They are created as suitable classifiers to categorize any dataset in Big Data effectively.The proposed Entropy-ELM-WOA is more capable compared to the existing systems.展开更多
In this work,an improved active kriging method based on the AK-IS and truncated importance sampling(TIS)method is proposed to efficiently evaluate structural reliability.The novel method called AWK-TIS is inspired by ...In this work,an improved active kriging method based on the AK-IS and truncated importance sampling(TIS)method is proposed to efficiently evaluate structural reliability.The novel method called AWK-TIS is inspired by AK-IS and RBF-GA previously published in the literature.The innovation of the AWK-TIS is that TIS is adopted to lessen the sample pool size significantly,and the whale optimization algorithm(WOA)is employed to acquire the optimal Krigingmodel and themost probable point(MPP).To verify the performance of theAWK-TISmethod for structural reliability,four numerical cases which are utilized as benchmarks in literature and one real engineering problem about a jet van manipulate mechanism are tested.The results indicate the accuracy and efficiency of the proposed method.展开更多
Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;howe...Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;however,the selection of relevant features for classification remains challenging.In this study,we propose a new approach for pavement crack detection that integrates deep learning for feature extraction,the whale optimization algorithm(WOA)for feature selection,and random forest(RF)for classification.The performance of the models was evaluated using accuracy,recall,precision,F1 score,and area under the receiver operating characteristic curve(AUC).Our findings reveal that Model 2,which incorporates RF into the ResNet-18 architecture,outperforms baseline Model 1 across all evaluation metrics.Nevertheless,our proposed model,which combines ResNet-18 with both WOA and RF,achieves significantly higher accuracy,recall,precision,and F1 score compared to the other two models.These results underscore the effectiveness of integrating RF and WOA into ResNet-18 for pavement crack detection applications.We applied the proposed approach to a dataset of pavement images,achieving an accuracy of 97.16%and an AUC of 0.984.Our results demonstrate that the proposed approach surpasses existing methods for pavement crack detection,offering a promising solution for the automatic identification of pavement cracks.By leveraging this approach,potential safety hazards can be identified more effectively,enabling timely repairs and maintenance measures.Lastly,the findings of this study also emphasize the potential of integrating RF and WOA with deep learning for pavement crack detection,providing road authorities with the necessary tools to make informed decisions regarding road infrastructure maintenance.展开更多
The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algo...The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algorithm called OLCHWOA,incorporating a chaos mechanism and an opposition-based learning strategy.This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase,thereby enhancing the quality of the initial whale population.Additionally,including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations.The work and contributions of this paper are primarily reflected in two aspects.Firstly,an improved whale algorithm with enhanced development capabilities and a wide range of application scenarios is proposed.Secondly,the proposed OLCHWOA is used to optimize the hyperparameters of the Long Short-Term Memory(LSTM)networks.Subsequently,a prediction model for Realized Volatility(RV)based on OLCHWOA-LSTM is proposed to optimize hyperparameters automatically.To evaluate the performance of OLCHWOA,a series of comparative experiments were conducted using a variety of advanced algorithms.These experiments included 38 standard test functions from CEC2013 and CEC2019 and three constrained engineering design problems.The experimental results show that OLCHWOA ranks first in accuracy and stability under the same maximum fitness function calls budget.Additionally,the China Securities Index 300(CSI 300)dataset is used to evaluate the effectiveness of the proposed OLCHWOA-LSTM model in predicting RV.The comparison results with the other eight models show that the proposed model has the highest accuracy and goodness of fit in predicting RV.This further confirms that OLCHWOA effectively addresses real-world optimization problems.展开更多
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term...Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space.展开更多
Since traditional whale optimization algorithms have slow convergence speed,low accuracy and are easy to fall into local optimal solutions,an improved whale optimization algorithm based on mirror selection(WOA-MS)is p...Since traditional whale optimization algorithms have slow convergence speed,low accuracy and are easy to fall into local optimal solutions,an improved whale optimization algorithm based on mirror selection(WOA-MS)is proposed. Specific improvements includes:(1)An adaptive nonlinear inertia weight based on Branin function was introduced to balance global search and local mining.(2) A mirror selection method is proposed to improve the individual quality and speed up the convergence. By optimizing several test functions and comparing the experimental results with other three algorithms,this study verifies that WOA-MS has an excellent optimization performance.展开更多
Environmental micro-vibration is one of the key factors impacting the running of electronic workshop.Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and te...Environmental micro-vibration is one of the key factors impacting the running of electronic workshop.Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and testing equipment,and even causes irreversible damage to the equipment.Micro-vibration testing and response analysis are important to guide the vibration isolation design and ensure the stable operation of various precision equipment in the workshop.Parameters of Davidenkov model are fitted based on whale swarm optimization algorithm,and its applicability is verified.At the same time,taking the testing project of an electronic workshop raw land as an example,the micro-vibration response is analyzed.The results show that the nonlinear constitutive model constructed by whale optimization algorithm can simulate the dynamic nonlinear behavior of soil under the action of micro-vibration better.Compared with the traditional equivalent linearization method,the nonlinear constitutive model based on the whale optimization algorithm has a smaller acceleration response value.It can effectively suppress the“virtual resonance effect”produced by the equivalent linearization method.展开更多
Software systems have been employed in many fields as a means to reduce human efforts;consequently,stakeholders are interested in more updates of their capabilities.Code smells arise as one of the obstacles in the sof...Software systems have been employed in many fields as a means to reduce human efforts;consequently,stakeholders are interested in more updates of their capabilities.Code smells arise as one of the obstacles in the software industry.They are characteristics of software source code that indicate a deeper problem in design.These smells appear not only in the design but also in software implementation.Code smells introduce bugs,affect software maintainability,and lead to higher maintenance costs.Uncovering code smells can be formulated as an optimization problem of finding the best detection rules.Although researchers have recommended different techniques to improve the accuracy of code smell detection,these methods are still unstable and need to be improved.Previous research has sought only to discover a few at a time(three or five types)and did not set rules for detecting their types.Our research improves code smell detection by applying a search-based technique;we use the Whale Optimization Algorithm as a classifier to find ideal detection rules.Applying this algorithm,the Fisher criterion is utilized as a fitness function to maximize the between-class distance over the withinclass variance.The proposed framework adopts if-then detection rules during the software development life cycle.Those rules identify the types for both medium and large projects.Experiments are conducted on five open-source software projects to discover nine smell types that mostly appear in codes.The proposed detection framework has an average of 94.24%precision and 93.4%recall.These accurate values are better than other search-based algorithms of the same field.The proposed framework improves code smell detection,which increases software quality while minimizing maintenance effort,time,and cost.Additionally,the resulting classification rules are analyzed to find the software metrics that differentiate the nine code smells.展开更多
The Whale Optimization Algorithm(WOA)is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales.In spite of its popularity due to simplicity,ease of implementation,and a limited...The Whale Optimization Algorithm(WOA)is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales.In spite of its popularity due to simplicity,ease of implementation,and a limited number of parameters,WOA’s search strategy can adversely affect the convergence and equilibrium between exploration and exploitation in complex problems.To address this limitation,we propose a new algorithm called Multi-trial Vector-based Whale Optimization Algorithm(MTV-WOA)that incorporates a Balancing Strategy-based Trial-vector Producer(BS_TVP),a Local Strategy-based Trial-vector Producer(LS_TVP),and a Global Strategy-based Trial-vector Producer(GS_TVP)to address real-world optimization problems of varied degrees of difficulty.MTV-WOA has the potential to enhance exploitation and exploration,reduce the probability of being stranded in local optima,and preserve the equilibrium between exploration and exploitation.For the purpose of evaluating the proposed algorithm's performance,it is compared to eight metaheuristic algorithms utilizing CEC 2018 test functions.Moreover,MTV-WOA is compared with well-stablished,recent,and WOA variant algorithms.The experimental results demonstrate that MTV-WOA surpasses comparative algorithms in terms of the accuracy of the solutions and convergence rate.Additionally,we conducted the Friedman test to assess the gained results statistically and observed that MTV-WOA significantly outperforms comparative algorithms.Finally,we solved five engineering design problems to demonstrate the practicality of MTV-WOA.The results indicate that the proposed MTV-WOA can efficiently address the complexities of engineering challenges and provide superior solutions that are superior to those of other algorithms.展开更多
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i...Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.展开更多
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec...Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.展开更多
Various feature selection algorithms are usually employed to improve classification models’overall performance.Optimization algorithms typically accompany such algorithms to select the optimal set of features.Among t...Various feature selection algorithms are usually employed to improve classification models’overall performance.Optimization algorithms typically accompany such algorithms to select the optimal set of features.Among the most currently attractive trends within optimization algorithms are hybrid metaheuristics.The present paper presents two Stages of Local Search models for feature selection based on WOA(Whale Optimization Algorithm)and Great Deluge(GD).GD Algorithm is integrated with the WOA algorithm to improve exploitation by identifying the most promising regions during the search.Another version is employed using the best solution found by the WOA algorithm and exploited by the GD algorithm.In addition,disruptive selection(DS)is employed to select the solutions from the population for local search.DS is chosen to maintain the diversity of the population via enhancing low and high-quality solutions.Fifteen(15)standard benchmark datasets provided by the University of California Irvine(UCI)repository were used in evaluating the proposed approaches’performance.Next,a comparison was made with four population-based algorithms as wrapper feature selection methods from the literature.The proposed techniques have proved their efficiency in enhancing classification accuracy compared to other wrapper methods.Hence,the WOA can search effectively in the feature space and choose the most relevant attributes for classification tasks.展开更多
A parameter estimation method based on an improved Whale Optimization Algorithm is proposed in this paper to identify the parameters of a static var compensator(SVC)model.First,a mathematical model of SVC is establish...A parameter estimation method based on an improved Whale Optimization Algorithm is proposed in this paper to identify the parameters of a static var compensator(SVC)model.First,a mathematical model of SVC is established.Then,the reverse learning strategy and Levy flight disturbance strategy are introduced to improve the whale optimization algorithm,and the improved whale optimization algorithm is applied to the parameter identification of the static var compensator model.Finally,a stepwise identification method,by analyzing the local sensitivities of parameters,is proposed which solves the problem of low accuracy caused by multi-parameter identification.This method provides a new estimation strategy for accurately identifying the parameters of the static var compensator model.Estimation results show that the parameter estimation method can be an effective tool to solve the problem of parameter identification for the SVC model.展开更多
基金the VNUHCM-University of Information Technology’s Scientific Research Support Fund.
文摘Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.
基金supported in part by the Natural Science Youth Foundation of Hebei Province under Grant F2019403207in part by the PhD Research Startup Foundation of Hebei GEO University under Grant BQ2019055+3 种基金in part by the Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant KLIGIP-2021A06in part by the Fundamental Research Funds for the Universities in Hebei Province under Grant QN202220in part by the Science and Technology Research Project for Universities of Hebei under Grant ZD2020344in part by the Guangxi Natural Science Fund General Project under Grant 2021GXNSFAA075029.
文摘In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.
文摘Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
文摘Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.
文摘The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.
基金the National Natural Science Foundation of China(No.62176146)。
文摘A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low optimization precision.Firstly,the population is initialized by introducing the theory of good point set,which increases the randomness and diversity of the population and lays the foundation for the global optimization of the algorithm.Then,a novel linearly update equation of convergence factor is designed to coordinate the abilities of exploration and exploitation.At the same time,the global exploration and local exploitation capabilities are improved through the siege mechanism of Harris Hawks optimization algorithm.Finally,the simulation experiments are conducted on the 6 benchmark functions and Wilcoxon rank sum test to evaluate the optimization performance of the improved algorithm.The experimental results show that the proposed algorithm has more significant improvement in optimization accuracy,convergence speed and robustness than the comparison algorithm.
基金supported by Anhui Polytechnic University Introduced Talents Research Fund(No.2021YQQ064)Anhui Polytechnic University ScientificResearch Project(No.Xjky2022168).
文摘Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used to solve practical engineering optimization problems.However,with the increased dimensions,higher requirements are put forward for algorithm performance.The double population whale optimization algorithm with distributed collaboration and reverse learning ability(DCRWOA)is proposed to solve the slow convergence speed and unstable search accuracy of the WOA algorithm in optimization problems.In the DCRWOA algorithm,the novel double population search strategy is constructed.Meanwhile,the reverse learning strategy is adopted in the population search process to help individuals quickly jump out of the non-ideal search area.Numerical experi-ments are carried out using standard test functions with different dimensions(10,50,100,200).The optimization case of shield construction parameters is also used to test the practical application performance of the proposed algo-rithm.The results show that the DCRWOA algorithm has higher optimization accuracy and stability,and the convergence speed is significantly improved.Therefore,the proposed DCRWOA algorithm provides a better method for solving practical optimization problems.
文摘Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops.Manually identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations.An atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural production.This paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem borers.Because of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing images.The community-based cumulative algorithm was used to classify the pests in the existing system.The proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in agricul-ture.The Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification accuracy.Support Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are interested.They are created as suitable classifiers to categorize any dataset in Big Data effectively.The proposed Entropy-ELM-WOA is more capable compared to the existing systems.
基金supported by the Technical Basic Scientific Research Projects of State Administration of Science,Technology and Industry for National Defence,PRC (Grant No.JSZL2019204C001).
文摘In this work,an improved active kriging method based on the AK-IS and truncated importance sampling(TIS)method is proposed to efficiently evaluate structural reliability.The novel method called AWK-TIS is inspired by AK-IS and RBF-GA previously published in the literature.The innovation of the AWK-TIS is that TIS is adopted to lessen the sample pool size significantly,and the whale optimization algorithm(WOA)is employed to acquire the optimal Krigingmodel and themost probable point(MPP).To verify the performance of theAWK-TISmethod for structural reliability,four numerical cases which are utilized as benchmarks in literature and one real engineering problem about a jet van manipulate mechanism are tested.The results indicate the accuracy and efficiency of the proposed method.
文摘Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;however,the selection of relevant features for classification remains challenging.In this study,we propose a new approach for pavement crack detection that integrates deep learning for feature extraction,the whale optimization algorithm(WOA)for feature selection,and random forest(RF)for classification.The performance of the models was evaluated using accuracy,recall,precision,F1 score,and area under the receiver operating characteristic curve(AUC).Our findings reveal that Model 2,which incorporates RF into the ResNet-18 architecture,outperforms baseline Model 1 across all evaluation metrics.Nevertheless,our proposed model,which combines ResNet-18 with both WOA and RF,achieves significantly higher accuracy,recall,precision,and F1 score compared to the other two models.These results underscore the effectiveness of integrating RF and WOA into ResNet-18 for pavement crack detection applications.We applied the proposed approach to a dataset of pavement images,achieving an accuracy of 97.16%and an AUC of 0.984.Our results demonstrate that the proposed approach surpasses existing methods for pavement crack detection,offering a promising solution for the automatic identification of pavement cracks.By leveraging this approach,potential safety hazards can be identified more effectively,enabling timely repairs and maintenance measures.Lastly,the findings of this study also emphasize the potential of integrating RF and WOA with deep learning for pavement crack detection,providing road authorities with the necessary tools to make informed decisions regarding road infrastructure maintenance.
基金The National Natural Science Foundation of China(Grant No.81973791)funded this research.
文摘The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algorithm called OLCHWOA,incorporating a chaos mechanism and an opposition-based learning strategy.This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase,thereby enhancing the quality of the initial whale population.Additionally,including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations.The work and contributions of this paper are primarily reflected in two aspects.Firstly,an improved whale algorithm with enhanced development capabilities and a wide range of application scenarios is proposed.Secondly,the proposed OLCHWOA is used to optimize the hyperparameters of the Long Short-Term Memory(LSTM)networks.Subsequently,a prediction model for Realized Volatility(RV)based on OLCHWOA-LSTM is proposed to optimize hyperparameters automatically.To evaluate the performance of OLCHWOA,a series of comparative experiments were conducted using a variety of advanced algorithms.These experiments included 38 standard test functions from CEC2013 and CEC2019 and three constrained engineering design problems.The experimental results show that OLCHWOA ranks first in accuracy and stability under the same maximum fitness function calls budget.Additionally,the China Securities Index 300(CSI 300)dataset is used to evaluate the effectiveness of the proposed OLCHWOA-LSTM model in predicting RV.The comparison results with the other eight models show that the proposed model has the highest accuracy and goodness of fit in predicting RV.This further confirms that OLCHWOA effectively addresses real-world optimization problems.
基金This work was supported by the National Natural Science Foundation of China(Grant No.2017YFC0403605 and No.11601419).
文摘Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space.
基金supported by the Natural Science Foundation of Jiangsu Province (No. BK20151479)the Open Foundation of Graduate Innovation Base in Nanjing University of Aeronautics and Astronautics(No. kfjj20190736)
文摘Since traditional whale optimization algorithms have slow convergence speed,low accuracy and are easy to fall into local optimal solutions,an improved whale optimization algorithm based on mirror selection(WOA-MS)is proposed. Specific improvements includes:(1)An adaptive nonlinear inertia weight based on Branin function was introduced to balance global search and local mining.(2) A mirror selection method is proposed to improve the individual quality and speed up the convergence. By optimizing several test functions and comparing the experimental results with other three algorithms,this study verifies that WOA-MS has an excellent optimization performance.
文摘Environmental micro-vibration is one of the key factors impacting the running of electronic workshop.Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and testing equipment,and even causes irreversible damage to the equipment.Micro-vibration testing and response analysis are important to guide the vibration isolation design and ensure the stable operation of various precision equipment in the workshop.Parameters of Davidenkov model are fitted based on whale swarm optimization algorithm,and its applicability is verified.At the same time,taking the testing project of an electronic workshop raw land as an example,the micro-vibration response is analyzed.The results show that the nonlinear constitutive model constructed by whale optimization algorithm can simulate the dynamic nonlinear behavior of soil under the action of micro-vibration better.Compared with the traditional equivalent linearization method,the nonlinear constitutive model based on the whale optimization algorithm has a smaller acceleration response value.It can effectively suppress the“virtual resonance effect”produced by the equivalent linearization method.
文摘Software systems have been employed in many fields as a means to reduce human efforts;consequently,stakeholders are interested in more updates of their capabilities.Code smells arise as one of the obstacles in the software industry.They are characteristics of software source code that indicate a deeper problem in design.These smells appear not only in the design but also in software implementation.Code smells introduce bugs,affect software maintainability,and lead to higher maintenance costs.Uncovering code smells can be formulated as an optimization problem of finding the best detection rules.Although researchers have recommended different techniques to improve the accuracy of code smell detection,these methods are still unstable and need to be improved.Previous research has sought only to discover a few at a time(three or five types)and did not set rules for detecting their types.Our research improves code smell detection by applying a search-based technique;we use the Whale Optimization Algorithm as a classifier to find ideal detection rules.Applying this algorithm,the Fisher criterion is utilized as a fitness function to maximize the between-class distance over the withinclass variance.The proposed framework adopts if-then detection rules during the software development life cycle.Those rules identify the types for both medium and large projects.Experiments are conducted on five open-source software projects to discover nine smell types that mostly appear in codes.The proposed detection framework has an average of 94.24%precision and 93.4%recall.These accurate values are better than other search-based algorithms of the same field.The proposed framework improves code smell detection,which increases software quality while minimizing maintenance effort,time,and cost.Additionally,the resulting classification rules are analyzed to find the software metrics that differentiate the nine code smells.
文摘The Whale Optimization Algorithm(WOA)is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales.In spite of its popularity due to simplicity,ease of implementation,and a limited number of parameters,WOA’s search strategy can adversely affect the convergence and equilibrium between exploration and exploitation in complex problems.To address this limitation,we propose a new algorithm called Multi-trial Vector-based Whale Optimization Algorithm(MTV-WOA)that incorporates a Balancing Strategy-based Trial-vector Producer(BS_TVP),a Local Strategy-based Trial-vector Producer(LS_TVP),and a Global Strategy-based Trial-vector Producer(GS_TVP)to address real-world optimization problems of varied degrees of difficulty.MTV-WOA has the potential to enhance exploitation and exploration,reduce the probability of being stranded in local optima,and preserve the equilibrium between exploration and exploitation.For the purpose of evaluating the proposed algorithm's performance,it is compared to eight metaheuristic algorithms utilizing CEC 2018 test functions.Moreover,MTV-WOA is compared with well-stablished,recent,and WOA variant algorithms.The experimental results demonstrate that MTV-WOA surpasses comparative algorithms in terms of the accuracy of the solutions and convergence rate.Additionally,we conducted the Friedman test to assess the gained results statistically and observed that MTV-WOA significantly outperforms comparative algorithms.Finally,we solved five engineering design problems to demonstrate the practicality of MTV-WOA.The results indicate that the proposed MTV-WOA can efficiently address the complexities of engineering challenges and provide superior solutions that are superior to those of other algorithms.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFF0708903)Ningbo Municipal Key Technology Research and Development Program of China(Grant No.2022Z006)Youth Fund of National Natural Science Foundation of China(Grant No.52205043)。
文摘Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R 343)PrincessNourah bint Abdulrahman University,Riyadh,Saudi ArabiaDeanship of Scientific Research at Northern Border University,Arar,Kingdom of Saudi Arabia,for funding this researchwork through the project number“NBU-FFR-2024-1092-02”.
文摘Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.
基金This research is part of a project funded by Imam Abdulrahman Bin Faisal University,under Grant Number 2020-083-BASRC.
文摘Various feature selection algorithms are usually employed to improve classification models’overall performance.Optimization algorithms typically accompany such algorithms to select the optimal set of features.Among the most currently attractive trends within optimization algorithms are hybrid metaheuristics.The present paper presents two Stages of Local Search models for feature selection based on WOA(Whale Optimization Algorithm)and Great Deluge(GD).GD Algorithm is integrated with the WOA algorithm to improve exploitation by identifying the most promising regions during the search.Another version is employed using the best solution found by the WOA algorithm and exploited by the GD algorithm.In addition,disruptive selection(DS)is employed to select the solutions from the population for local search.DS is chosen to maintain the diversity of the population via enhancing low and high-quality solutions.Fifteen(15)standard benchmark datasets provided by the University of California Irvine(UCI)repository were used in evaluating the proposed approaches’performance.Next,a comparison was made with four population-based algorithms as wrapper feature selection methods from the literature.The proposed techniques have proved their efficiency in enhancing classification accuracy compared to other wrapper methods.Hence,the WOA can search effectively in the feature space and choose the most relevant attributes for classification tasks.
文摘A parameter estimation method based on an improved Whale Optimization Algorithm is proposed in this paper to identify the parameters of a static var compensator(SVC)model.First,a mathematical model of SVC is established.Then,the reverse learning strategy and Levy flight disturbance strategy are introduced to improve the whale optimization algorithm,and the improved whale optimization algorithm is applied to the parameter identification of the static var compensator model.Finally,a stepwise identification method,by analyzing the local sensitivities of parameters,is proposed which solves the problem of low accuracy caused by multi-parameter identification.This method provides a new estimation strategy for accurately identifying the parameters of the static var compensator model.Estimation results show that the parameter estimation method can be an effective tool to solve the problem of parameter identification for the SVC model.