The technique of producing doublehaploid of wheat by distant hybridization between wheat and maize has characterized with better inducing effect, shorter in- ducing period, easy operation, and so on. At present, it is...The technique of producing doublehaploid of wheat by distant hybridization between wheat and maize has characterized with better inducing effect, shorter in- ducing period, easy operation, and so on. At present, it is the most efficient and has great potential of application in breeding of wheat. This article reviewed princi- ple and production process of the technique, research situation of the three key in- dicators of the technology(embryo rate, seedling rate and success rate of doubling)in recent years, and application of the technology in breeding, genetics, germplasm improvement of wheat. At last, both the achievements and the direction of further improvement and development of the technology in our program were discussed.展开更多
To investigate the expression profile of maize genes induced by submergence, a subtracted cDNA library of maize seedling roots was constructed using suppression subtractive hybridization (SSH). The cDNA of maize seedl...To investigate the expression profile of maize genes induced by submergence, a subtracted cDNA library of maize seedling roots was constructed using suppression subtractive hybridization (SSH). The cDNA of maize seedling roots treated with submergence (ST) was used as tester and what from untreated roots (UT) as driver. Products of the secondary PCR from the forward subtraction were cloned into T/A vector and transferred into Escherichia coli strain JM10B by electroporation. Four hundred and eight randomly chosen transformants carrying cDNA fragments were screened with PCR-Select Deferential Screening Kit. One hundred and eighty-four cDNA clones were identified as, submergence specifically induced or highly expressed. After sequencing and removing redundant cDNAs, we got 95 submergence-induced cDNA clones. Of the 95 cDNA clones, 68 contain the regions with 60%-90% identity to their homolog in GenBank, 21 are expected to be novel genes, only 6 correspond to the published maize sequences.展开更多
The use of hybrid wheat is one way to improve the yield in the future.However,greater plant heights increase lodging risk to some extent.In this study,two hybrid combinations with differences in lodging resistance wer...The use of hybrid wheat is one way to improve the yield in the future.However,greater plant heights increase lodging risk to some extent.In this study,two hybrid combinations with differences in lodging resistance were used to analyze the stem-related traits during the filling stage,and to investigate the mechanism of the difference in lodging resistance by analyzing lignin synthesis of the basal second internode(BSI).The stem-related traits such as the breaking strength,stem pole substantial degree(SPSD),and rind penetration strength(RPS),as well as the lignin content of the lodging-resistant combination(LRC),were significantly higher than those of the lodgingsensitive combination(LSC).The phenylpropanoid biosynthesis pathway was significantly and simultaneously enriched according to the transcriptomics and metabolomics analysis at the later filling stage.A total of 35 critical regulatory genes involved in the phenylpropanoid pathway were identified.Moreover,42%of the identified genes were significantly and differentially expressed at the later grain-filling stage between the two combinations,among which more than 80%were strongly up-regulated at that stage in the LRC compared with LSC.On the contrary,the LRC displayed lower contents of lignin intermediate metabolites than the LSC.These results suggested that the key to the lodging resistance formation of LRC is largely the higher lignin synthesis at the later grain-filling stage.Finally,breeding strategies for synergistically improving plant height and lodging resistance of hybrid wheat were put forward by comparing the LRC with the conventional wheat applied in large areas.展开更多
Flowering time(FT) is a key maize domestication trait, variation in which allows maize to grow in a wide range of latitudes. Although previous studies have investigated the genetic control of FT-related traits per se,...Flowering time(FT) is a key maize domestication trait, variation in which allows maize to grow in a wide range of latitudes. Although previous studies have investigated the genetic control of FT-related traits per se, few studies of FT hybrid performance have been published. We characterized the genomic architecture associated with hybrid performance for FT in a hybrid panel by testcrossing Chang 7–2 with 328Ye478 × Qi319 recombinant inbred lines(RILs). We identified 11 quantitative trait loci(QTL) for hybrid performance in FT-related traits, including a major QTL qFH10 that controls hybrid performance and heterosis in a summer maize-growing region. However, this locus acts in regulating FT traits per se only in a spring maize-growing region. We validated ZmCCT10 as a candidate gene for qFH10 and found that differences between hybrids and their parental lines in DNA methylation in the differentially methylated region(DMR, –700 to –1520) of the ZmCCT10 promoter affected gene expression pattern and thereby FT in the summer maize-growing region.展开更多
Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to ma...Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to make 285 single-cross hybrids in a partial-diallel cross design.These lines represented a mini-core collection of Chinese maize germplasm and comprised 18 inbred lines from the Stiff Stalk heterotic group and 16 inbred lines from the Non-Stiff Stalk heterotic group.The parents were genotyped by sequencing and the 285 hybrids were phenotyped for nine yield and yield-related traits at two locations in the summer sowing area(SUS)and three locations in the spring sowing area(SPS)in the main maizeproducing regions of China.Multiple GP models were employed to assess the accuracy of trait prediction in the hybrids.By ten-fold cross-validation,the prediction accuracies of yield performance of the hybrids estimated by the genomic best linear unbiased prediction(GBLUP)model in SUS and SPS were 0.51 and 0.46,respectively.The prediction accuracies of the remaining yield-related traits estimated with GBLUP ranged from 0.49 to 0.86 and from 0.53 to 0.89 in SUS and SPS,respectively.When additive,dominance,epistasis effects,genotype-by-environment interaction,and multi-trait effects were incorporated into the prediction model,the prediction accuracy of hybrid yield performance was improved.The ratio of training to testing population and size of training population optimal for yield prediction were determined.Multiple prediction models can improve prediction accuracy in hybrid breeding.展开更多
Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which no...Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy.展开更多
In this study, a forward cDNA library was constructed by suppression subtractive hybridization using seedling leaves of CN165, a drought-tolerant maize inbred line. In the suppression subtractive hybridization (SSH)...In this study, a forward cDNA library was constructed by suppression subtractive hybridization using seedling leaves of CN165, a drought-tolerant maize inbred line. In the suppression subtractive hybridization (SSH) library, 672 positive clones were picked up randomly. After polymerase chain reaction (PCR) of each clone, all the single clones were sequenced. Totally 598 available sequences were obtained. After cluster analysis of the EST sequences, 80 uniESTs were obtained, among which 57 uniESTs were contigs and 23 uniESTs were singlets. The results of BLASTN showed that all the uniESTs had homologous sequences in the nr database. The BLASTX results indicated that 68 uniESTs had significant protein homology, 8 uniESTs with homology of unknown proteins and putative proteins, and 4 uniESTs without protein homology. Those drought stress-induced genes were involved in many metabolism pathways to regulate plant growth and development under drought stress.展开更多
The technique of simultaneous G banding and in situ hybridization has been developed in plants for the first time.Using this technique.RFLP marker umc58 closely linked with the hm1 gene dictating Helminthosporium carb...The technique of simultaneous G banding and in situ hybridization has been developed in plants for the first time.Using this technique.RFLP marker umc58 closely linked with the hm1 gene dictating Helminthosporium carbonum susceptibility1 was localized onto 1L3(chromosome 1,long arm,the third band from the centromere to the end of the arm),5L5 and 9L5.Theresults demonstrated that umc58 was a tripli cated sequence.It was deduced that umc58 probably was in a duplicated region that includes a part of Helminthosporium carbonum susceptibility genes(hm1 and hm2),as the hybridization sites of umc58 in chro mosomes 1 and 9 were those at which the genes localize.The techniques of simultaneous G banding and ISH in plants are discussed.展开更多
Ten terminal or subterminal RFLP markers belonging to linkage groups 1, 3, 5, 6, and 10 in maize RFLP map were physically located onto maize mitotic chromosomes with in situ hybridization. All biotinylated probes from...Ten terminal or subterminal RFLP markers belonging to linkage groups 1, 3, 5, 6, and 10 in maize RFLP map were physically located onto maize mitotic chromosomes with in situ hybridization. All biotinylated probes from 600 to 2 250 bp were detected by DAB staining. The markers belonging to linkage groups 1, 3, 5, 6, and 10 correspondingly located at the chromosomes 1, 3, 5, 6, and 10. All of the tested markers except bnl6.25 and umc44 were duplicated sequences. Each of them was also labeled on another chromosome besides on the chromosome corresponding to its linkage group. The marker bnl3.04 was triplicated sequences and the signals were detected on three nonhomologous chromosomes. In the tested ten markers, there were only four located at the ends of corresponding chromosomes. Others were located at sites midway along the chromosome arms or near the centromeres. The region covered by two terminal or subterminal markers in each of linkage groups 1, 3, 5, and 6 occupied 80.02%, 38.25%, 82.30% and 51.16% of the region of both short and long arms in chromosomes 1, 3, 5,and 6 respectively. Only two terminal markers of linkage group 10 covered the whole chromosome 10. In some linkage groups, two terminal or subterminal markers covered a short genetic distance but were physically distant, while two covering a longer genetic distance were physically closer.展开更多
Centromere-specific histone H3 (CENH3) replaces the canonical histone H3 in nucleosomes of functional centromeres, and plays important roles in faithful chromosome segregation during cell division. CENH3 is also impor...Centromere-specific histone H3 (CENH3) replaces the canonical histone H3 in nucleosomes of functional centromeres, and plays important roles in faithful chromosome segregation during cell division. CENH3 is also important in the recognition of alien centromeres and determines the accommodation or elimination of alien chromosomes in interspecific or intergenic hybridization. In this study, a maize full length CENH3 with a yellow fluorescent protein (YFP) tag at C-terminus (ZmCENH3-YFP) and a synthetic hybrid wmCENH3 with the N-terminus from wheat CENH3 and the histone fold domain (HFD) from maize tagged with a red fluorescent protein (RFP) at the C-terminus (wmCENH3-RFP) were transformed to wheat by biolistics transformation. Transgenic wheat plants with both ZmCNEH3-YFP and wmCENH3-RFP genes were identified by PCR. The expression of ZmCENH3-YFP was not observed, while the expression of wmCENH3-RFP could be detected by RT-PCR, direct fluorescence microscopy, and immunostaining with anti-RFP antibody. The expressed wmCENH3-RFP was localized to nuclei as dotted patterns, indicating its targeting to wheat centromeres. Somatic hybridization was performed between wmCENH3-RFP transgenic wheat and transgenic maize that expressed a ZmCENH3-YFP gene to investigate chromosome behaviors in somatic hybrids. Cytological and FISH analyses of somatic hybrid cells showed the formation of micronuclei and lagging chromatin in both somatic hybridizations with or without the wmCENH3-RFP transgene, indicating that ectopically expressed wmCENH3 could not overcome chromosome elimination in wheat/maize somatic hybrids. Immunostaining of wmCENH3-RFP and ZmCENH3-YFP in early stage somatic hybrid cells indicated that both wmCENH3-RFP and ZmCENH3-YFP proteins were expressed, but their binding patterns changed from the commonly observed dotted patterns to diffused ones, suggesting that the inactivation of CENH3 might be a factor for chromosome elimination in wheat/maize somatic hybridization.展开更多
A maize (Zea mays L.) genome_specific repeated DNA sequence (clone MR64) has been transferred into one DH line of wheat through wheat (Triticum persicum Vav. ex Zhuk.) and maize cross. In the present study by RFLP ana...A maize (Zea mays L.) genome_specific repeated DNA sequence (clone MR64) has been transferred into one DH line of wheat through wheat (Triticum persicum Vav. ex Zhuk.) and maize cross. In the present study by RFLP analysis the authors proved that this DNA sequence could stably transmit into DH3 plants, the next generation derived from DH2 self_crossing. A similarity search in all DNA databases using BLASTN program showed that the DNA sequence of MR64 had as high as 93% identity to PREM_2 and 79% to Opie_2 in nucleotides. Both PREM_2 and Opie_2 are known as retrotransposons in maize genome, suggesting that MR64 likely is the partial sequence of a maize retrotransposon. Therefore, the results indicate that some retrotransposon might involve the DNA introgression from maize to wheat genome through wide fertilization. Stable inheritance of this maize genome_specific retrotransposon_like DNA in the wheat genome opens up the possibility of using retrotransposon as a new tool for gene tagging, function analysis, and insertional mutagenesis in wheat genome.展开更多
A DH population derived from C49S-87/01Y1-1069 was used to study the inheritance of wheat haploid embryo production frequency(EPF) in wheat × maize cross with the mixed major gene and polygene inheritance model...A DH population derived from C49S-87/01Y1-1069 was used to study the inheritance of wheat haploid embryo production frequency(EPF) in wheat × maize cross with the mixed major gene and polygene inheritance model of quantitative traits. The results showed that the EPF of wheat × maize cross was controlled by two dominant epistatic genes and polygene with gene effects of 1.95 for the first major gene, 6.69 for the second one and 2.80 for the polygene. The inheritability of major genes was as high as 72.09%, suggesting that the differences in EPF among wheat materials were mainly influenced by genotype. However, non-genetic factors were still important, especially for wheat materials with low EPF.展开更多
In northern China, the soil-born diseases of wheat have been getting more and more serious under a new farming system that returns maize straw to the field. In order to investigate the allelopathy of the decomposed ma...In northern China, the soil-born diseases of wheat have been getting more and more serious under a new farming system that returns maize straw to the field. In order to investigate the allelopathy of the decomposed maize straw products on three soil-born diseases of wheat, culture dish and pot experiments were conducted and the compounds in the products were identified by gas chromatography-mass spectrometry (GC-MS). Culture dish experiments showed that the mycelial growth, sclerotia formation amount and total weight of Rhizoctonia cerealis were promoted at concentrations of 0.03, 0.06 and 0.12 g mL-1 and inhibited at concentration of 0.48 g mL-1 of the decomposed products. No significant effects were found of the product concentrations on average weight of the sclerotia. Mycelial growth of Gaeumannomyces graminis was promoted at almost all concentrations except the highest one. Mycelial growth and spore germination of Bipolaris sorokiniana were significantly inhibited by all concentrations of the decomposed products, with enhanced inhibition effects along with the increased concentrations. The length, number and dry weight of roots together with the root superoxide dismutase activity were promoted by the lowest concentration (0.03 g mL-1), with a synthetic effect index of 0.012, and inhibited by other concentrations. The ion leakage of roots was increased and the root peroxidase activity of roots was lowered by all the treatments. Pot experiments revealed that occurrence of the sharp eyespot was reduced by 0.03 and 0.06 g mL-1 of decomposed products after irrigation. However, the incidence rates and disease indexes were significantly increased by 0.12, 0.24 and 0.48 g mL-1 of decomposed products. The results indicated that incidence rates and disease indexes of the take-all were significantly promoted after being irrigated with the decomposed products, while occurrences of the common rot didn't change, significantly. GC-MS results showed that the compounds of the decomposed products included organic acids, esters, hydrocarbons, amides and aldehydes, with the proportions 25.26, 24.01, 17.22, 14.39 and 7.73%, respectively. Further analysis investigated that the allelochemicals identified in straw decomposed products contained p-hydroxybenzoic acid (9.21%), dibutyl phthalate (6.94%), 3-phenyl-2-acrylic (5.06%), 4-hydroxy-3,5-dimethoxybenzoic acid (2.26%), hexanoic acid (1.73%), 8-octadecenoic acid (1.06%), 3-(4-hydroxy-3-methoxy-phenyl)-2-propenoic acid (1.04%), 4-hydroxy-3-methoxy-benzoic acid (0.94%) and salicylic acid (0.94%).展开更多
The sustainability of the wheat-maize rotation is important to China's food security. Intensive cropping without recycling crop residues or other organic inputs results in the loss of soil organic matter (SOM) and ...The sustainability of the wheat-maize rotation is important to China's food security. Intensive cropping without recycling crop residues or other organic inputs results in the loss of soil organic matter (SOM) and nutrients, and is assumed to be non- sustainable. We evaluated the effects of nine different treatments on yields, nitrogen use efficiency, P and K balances, and soil fertility in a wheat-maize rotation system (1991-2010) on silt clay loam in Shaanxi, China. The treatments involved the application of recommended dose of nitrogen (N), nitrogen and phosphorus (NP), nitrogen and potassium (NK), phosphorus and potassium (PK), combined NPK, wheat or maize straw (S) with NPK (SNPK), or dairy manure (M) with NPK (M1NPK and M2NPK), along with an un-treated control treatment (CK). The mean yields of wheat and maize ranged from 992 and 2 235 kg ha-1 under CK to 5 962 and 6 894 kg ha-1 under M2NPK treatment, respectively. Treatments in which either N or P was omitted (N, NK and PK) gave significantly lower crop yields than those in which both were applied. The crop yields obtained under NP, NPK and SNPK treatments were statistically identical, as were those obtained under SNPK and MNPK. However, M2NPK gave a significant higher wheat yield than NP, and MNPK gave significant higher maize yield than both NP and NPK. Wheat yields increased significantly (by 86 to 155 kg ha-1 yr-1) in treatments where NP was applied, but maize yields did not. In general, the nitrogen use efficiency of wheat was the highest under the NP and NPK treatments; for maize, it was the highest under MNPK treatment. The P balance was highly positive under MNPK treatment, increasing by 136 to 213 kg ha-1 annually. While the K balance was negative in most treatments, ranging from 31 to 217 kg ha^-1 yr^-1, levels of soil available K remained unchanged or increased over the 20 yr. SOM levels increased significantly in all treatments. Overall, the results indicated that combinations of organic manure and inorganic nitrogen, or retuming straw with NP is likely to improve soil fertility, increasing the yields achievable with wheat-maize system in a way which is environmentally and agronomically beneficial on the tested soil.展开更多
Wheat is a staple food crop in the world as well as in China. Because of the progress of wheat breeding and other agricultural "sci-technologies, the wheat grain yield per unit area has increased more than five folds...Wheat is a staple food crop in the world as well as in China. Because of the progress of wheat breeding and other agricultural "sci-technologies, the wheat grain yield per unit area has increased more than five folds from 1952 to 2006 in China. The first part of this article briefly reviews the history of wheat breeding in China. Second, the establishment of "Triticum aestivum-Agropyron" distant hybridization system and its contribution to wheat production and breeding in China are summarized. Finally, the future challenges of wheat breeding are discussed, which include how to increase the utilization efficiencies of water, soil nutrient and light energy through breeding. As an example, our research progress on how to increase light use efficiency in wheat through breeding is introduced and discussed.展开更多
In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to ...In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to realize high crop productivity. Using the vast water resources of the saline upper aquifer for irrigation during WW jointing stage, may help to bridge the peak of dry season and relieve the tight water situation in the region. A field experiment was conducted during 2009-2012 to investigate the effects of saline irrigation during WW jointing stage on soil salt accumulation and productivity of WW and SM. The experiment treatments comprised no irrigation (T1), fresh water irrigation (T2), slightly saline water irrigation (T3:2.8 dS m-l), and strongly saline water irrigation (T4:8.2 dS m-1) at WW jointing stage. With regard to WW yields and aggregated annual WW-SM yields, clear benefits of saline water irrigation (T3 & T4) compared to no irrigation (T1), as well as insignificant yield losses compared to fresh water irrigation (T2) occurred in all three experiment years. However, the increased soil salinity in eady SM season in consequence of saline irrigation exerted a negative effect on SM photosynthesis and final yield in two of three experiment years. To avoid the negative aftereffects of saline irrigation, sufficient fresh water irrigation during SM sowing phase (i.e., increase from 60 to 90 mm) is recommended to guarantee good growth conditions during the sensitive early growing period of SM. The risk of long-term accumulation of salts as a result of saline irrigation during the peak of dry season is considered low, due to deep leaching of salts during regularly occurring wet years, as demonstrated in the 2012 experiment year. Thus, applying saline water irrigation at jointing stage of WW and fresh water at sowing of SM is most promising to realize high yield and fresh irrigation water saving.展开更多
Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model(SEBAL) and crop information...Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model(SEBAL) and crop information for assessment of regional crop(summer maize and winter wheat) actual evapotranspiration(ET a) in Huang-Huai-Hai(3H) Plain, China. The average seasonal ET a of summer maize and winter wheat were 354.8 and 521.5 mm respectively in 3H Plain. A high-ET a belt of summer maize occurs in piedmont plain, while a low ET a area was found in the hill-irrigable land and dry land area. For winter wheat, a high-ET a area was located in the middle part of 3H Plain, including low plain-hydropenia irrigable land and dry land, hill-irrigable land and dry land, and basin-irrigable land and dry land. Spatial analysis demonstrated a linear relationship between crop ET a, normalized difference vegetation index(NDVI), and the land surface temperature(LST). A stronger relationship between ET a and NDVI was found in the metaphase and last phase than other crop growing phase, as indicated by higher correlation coefficient values. Additionally, higher correlation coefficients were detected between ET a and LST than that between ET a and NDVI, and this significant relationship ran through the entire crop growing season. ET a in the summer maize growing season showed a significant relationship with longitude, while ET a in the winter wheat growing season showed a significant relationship with latitude. The results of this study will serve as baseline information for water resources management of 3H Plain.展开更多
文摘The technique of producing doublehaploid of wheat by distant hybridization between wheat and maize has characterized with better inducing effect, shorter in- ducing period, easy operation, and so on. At present, it is the most efficient and has great potential of application in breeding of wheat. This article reviewed princi- ple and production process of the technique, research situation of the three key in- dicators of the technology(embryo rate, seedling rate and success rate of doubling)in recent years, and application of the technology in breeding, genetics, germplasm improvement of wheat. At last, both the achievements and the direction of further improvement and development of the technology in our program were discussed.
文摘To investigate the expression profile of maize genes induced by submergence, a subtracted cDNA library of maize seedling roots was constructed using suppression subtractive hybridization (SSH). The cDNA of maize seedling roots treated with submergence (ST) was used as tester and what from untreated roots (UT) as driver. Products of the secondary PCR from the forward subtraction were cloned into T/A vector and transferred into Escherichia coli strain JM10B by electroporation. Four hundred and eight randomly chosen transformants carrying cDNA fragments were screened with PCR-Select Deferential Screening Kit. One hundred and eighty-four cDNA clones were identified as, submergence specifically induced or highly expressed. After sequencing and removing redundant cDNAs, we got 95 submergence-induced cDNA clones. Of the 95 cDNA clones, 68 contain the regions with 60%-90% identity to their homolog in GenBank, 21 are expected to be novel genes, only 6 correspond to the published maize sequences.
基金supported by the Youth Fund Project from Beijing Academy of Agricultural and Forestry Sciences China(QNJJ202225)the Germplasm Innovation and New Variety Breeding Project of Beijing China(G20220628002)the Training Programme Foundation for the Beijing Municipal Excellent Talents China(2017000020060G130)。
文摘The use of hybrid wheat is one way to improve the yield in the future.However,greater plant heights increase lodging risk to some extent.In this study,two hybrid combinations with differences in lodging resistance were used to analyze the stem-related traits during the filling stage,and to investigate the mechanism of the difference in lodging resistance by analyzing lignin synthesis of the basal second internode(BSI).The stem-related traits such as the breaking strength,stem pole substantial degree(SPSD),and rind penetration strength(RPS),as well as the lignin content of the lodging-resistant combination(LRC),were significantly higher than those of the lodgingsensitive combination(LSC).The phenylpropanoid biosynthesis pathway was significantly and simultaneously enriched according to the transcriptomics and metabolomics analysis at the later filling stage.A total of 35 critical regulatory genes involved in the phenylpropanoid pathway were identified.Moreover,42%of the identified genes were significantly and differentially expressed at the later grain-filling stage between the two combinations,among which more than 80%were strongly up-regulated at that stage in the LRC compared with LSC.On the contrary,the LRC displayed lower contents of lignin intermediate metabolites than the LSC.These results suggested that the key to the lodging resistance formation of LRC is largely the higher lignin synthesis at the later grain-filling stage.Finally,breeding strategies for synergistically improving plant height and lodging resistance of hybrid wheat were put forward by comparing the LRC with the conventional wheat applied in large areas.
基金jointly funded by the National Natural Science Foundation of China (31971963)Agricultural Science and Technology Innovation Program of CAAS。
文摘Flowering time(FT) is a key maize domestication trait, variation in which allows maize to grow in a wide range of latitudes. Although previous studies have investigated the genetic control of FT-related traits per se, few studies of FT hybrid performance have been published. We characterized the genomic architecture associated with hybrid performance for FT in a hybrid panel by testcrossing Chang 7–2 with 328Ye478 × Qi319 recombinant inbred lines(RILs). We identified 11 quantitative trait loci(QTL) for hybrid performance in FT-related traits, including a major QTL qFH10 that controls hybrid performance and heterosis in a summer maize-growing region. However, this locus acts in regulating FT traits per se only in a spring maize-growing region. We validated ZmCCT10 as a candidate gene for qFH10 and found that differences between hybrids and their parental lines in DNA methylation in the differentially methylated region(DMR, –700 to –1520) of the ZmCCT10 promoter affected gene expression pattern and thereby FT in the summer maize-growing region.
基金the National Natural Science Foundation of China(32272049,32261143757)Sustainable Development International Cooperation Program from Bill&Melinda Gates Foundation(2022YFAG1002)+2 种基金the National Key Research and Development Program of China(2020YFE0202300)the Agricultural Science&Technology Innovation Program(CAASZDRW202109)the China Scholarship Council.
文摘Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to make 285 single-cross hybrids in a partial-diallel cross design.These lines represented a mini-core collection of Chinese maize germplasm and comprised 18 inbred lines from the Stiff Stalk heterotic group and 16 inbred lines from the Non-Stiff Stalk heterotic group.The parents were genotyped by sequencing and the 285 hybrids were phenotyped for nine yield and yield-related traits at two locations in the summer sowing area(SUS)and three locations in the spring sowing area(SPS)in the main maizeproducing regions of China.Multiple GP models were employed to assess the accuracy of trait prediction in the hybrids.By ten-fold cross-validation,the prediction accuracies of yield performance of the hybrids estimated by the genomic best linear unbiased prediction(GBLUP)model in SUS and SPS were 0.51 and 0.46,respectively.The prediction accuracies of the remaining yield-related traits estimated with GBLUP ranged from 0.49 to 0.86 and from 0.53 to 0.89 in SUS and SPS,respectively.When additive,dominance,epistasis effects,genotype-by-environment interaction,and multi-trait effects were incorporated into the prediction model,the prediction accuracy of hybrid yield performance was improved.The ratio of training to testing population and size of training population optimal for yield prediction were determined.Multiple prediction models can improve prediction accuracy in hybrid breeding.
基金This study was funded by the National Key Research and Development Program of China(2021YFD1700900).
文摘Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy.
文摘In this study, a forward cDNA library was constructed by suppression subtractive hybridization using seedling leaves of CN165, a drought-tolerant maize inbred line. In the suppression subtractive hybridization (SSH) library, 672 positive clones were picked up randomly. After polymerase chain reaction (PCR) of each clone, all the single clones were sequenced. Totally 598 available sequences were obtained. After cluster analysis of the EST sequences, 80 uniESTs were obtained, among which 57 uniESTs were contigs and 23 uniESTs were singlets. The results of BLASTN showed that all the uniESTs had homologous sequences in the nr database. The BLASTX results indicated that 68 uniESTs had significant protein homology, 8 uniESTs with homology of unknown proteins and putative proteins, and 4 uniESTs without protein homology. Those drought stress-induced genes were involved in many metabolism pathways to regulate plant growth and development under drought stress.
文摘The technique of simultaneous G banding and in situ hybridization has been developed in plants for the first time.Using this technique.RFLP marker umc58 closely linked with the hm1 gene dictating Helminthosporium carbonum susceptibility1 was localized onto 1L3(chromosome 1,long arm,the third band from the centromere to the end of the arm),5L5 and 9L5.Theresults demonstrated that umc58 was a tripli cated sequence.It was deduced that umc58 probably was in a duplicated region that includes a part of Helminthosporium carbonum susceptibility genes(hm1 and hm2),as the hybridization sites of umc58 in chro mosomes 1 and 9 were those at which the genes localize.The techniques of simultaneous G banding and ISH in plants are discussed.
文摘Ten terminal or subterminal RFLP markers belonging to linkage groups 1, 3, 5, 6, and 10 in maize RFLP map were physically located onto maize mitotic chromosomes with in situ hybridization. All biotinylated probes from 600 to 2 250 bp were detected by DAB staining. The markers belonging to linkage groups 1, 3, 5, 6, and 10 correspondingly located at the chromosomes 1, 3, 5, 6, and 10. All of the tested markers except bnl6.25 and umc44 were duplicated sequences. Each of them was also labeled on another chromosome besides on the chromosome corresponding to its linkage group. The marker bnl3.04 was triplicated sequences and the signals were detected on three nonhomologous chromosomes. In the tested ten markers, there were only four located at the ends of corresponding chromosomes. Others were located at sites midway along the chromosome arms or near the centromeres. The region covered by two terminal or subterminal markers in each of linkage groups 1, 3, 5, and 6 occupied 80.02%, 38.25%, 82.30% and 51.16% of the region of both short and long arms in chromosomes 1, 3, 5,and 6 respectively. Only two terminal markers of linkage group 10 covered the whole chromosome 10. In some linkage groups, two terminal or subterminal markers covered a short genetic distance but were physically distant, while two covering a longer genetic distance were physically closer.
文摘Centromere-specific histone H3 (CENH3) replaces the canonical histone H3 in nucleosomes of functional centromeres, and plays important roles in faithful chromosome segregation during cell division. CENH3 is also important in the recognition of alien centromeres and determines the accommodation or elimination of alien chromosomes in interspecific or intergenic hybridization. In this study, a maize full length CENH3 with a yellow fluorescent protein (YFP) tag at C-terminus (ZmCENH3-YFP) and a synthetic hybrid wmCENH3 with the N-terminus from wheat CENH3 and the histone fold domain (HFD) from maize tagged with a red fluorescent protein (RFP) at the C-terminus (wmCENH3-RFP) were transformed to wheat by biolistics transformation. Transgenic wheat plants with both ZmCNEH3-YFP and wmCENH3-RFP genes were identified by PCR. The expression of ZmCENH3-YFP was not observed, while the expression of wmCENH3-RFP could be detected by RT-PCR, direct fluorescence microscopy, and immunostaining with anti-RFP antibody. The expressed wmCENH3-RFP was localized to nuclei as dotted patterns, indicating its targeting to wheat centromeres. Somatic hybridization was performed between wmCENH3-RFP transgenic wheat and transgenic maize that expressed a ZmCENH3-YFP gene to investigate chromosome behaviors in somatic hybrids. Cytological and FISH analyses of somatic hybrid cells showed the formation of micronuclei and lagging chromatin in both somatic hybridizations with or without the wmCENH3-RFP transgene, indicating that ectopically expressed wmCENH3 could not overcome chromosome elimination in wheat/maize somatic hybrids. Immunostaining of wmCENH3-RFP and ZmCENH3-YFP in early stage somatic hybrid cells indicated that both wmCENH3-RFP and ZmCENH3-YFP proteins were expressed, but their binding patterns changed from the commonly observed dotted patterns to diffused ones, suggesting that the inactivation of CENH3 might be a factor for chromosome elimination in wheat/maize somatic hybridization.
文摘A maize (Zea mays L.) genome_specific repeated DNA sequence (clone MR64) has been transferred into one DH line of wheat through wheat (Triticum persicum Vav. ex Zhuk.) and maize cross. In the present study by RFLP analysis the authors proved that this DNA sequence could stably transmit into DH3 plants, the next generation derived from DH2 self_crossing. A similarity search in all DNA databases using BLASTN program showed that the DNA sequence of MR64 had as high as 93% identity to PREM_2 and 79% to Opie_2 in nucleotides. Both PREM_2 and Opie_2 are known as retrotransposons in maize genome, suggesting that MR64 likely is the partial sequence of a maize retrotransposon. Therefore, the results indicate that some retrotransposon might involve the DNA introgression from maize to wheat genome through wide fertilization. Stable inheritance of this maize genome_specific retrotransposon_like DNA in the wheat genome opens up the possibility of using retrotransposon as a new tool for gene tagging, function analysis, and insertional mutagenesis in wheat genome.
基金Supported by National High Technology Research and Development Program of China(863 Program)(2011AA10A106)Yunnan Provincial Fund for Applied Basic Researches(2010CC001)Key New Product Development Plan of Yunnan Province(2012BB015)~~
文摘A DH population derived from C49S-87/01Y1-1069 was used to study the inheritance of wheat haploid embryo production frequency(EPF) in wheat × maize cross with the mixed major gene and polygene inheritance model of quantitative traits. The results showed that the EPF of wheat × maize cross was controlled by two dominant epistatic genes and polygene with gene effects of 1.95 for the first major gene, 6.69 for the second one and 2.80 for the polygene. The inheritability of major genes was as high as 72.09%, suggesting that the differences in EPF among wheat materials were mainly influenced by genotype. However, non-genetic factors were still important, especially for wheat materials with low EPF.
基金financially supported by the Key Technologies R&D Program of China during the 12th FiveYear Plan period (2011BAD16B08, 2012BAD04B06 and 2013BAD07B05)
文摘In northern China, the soil-born diseases of wheat have been getting more and more serious under a new farming system that returns maize straw to the field. In order to investigate the allelopathy of the decomposed maize straw products on three soil-born diseases of wheat, culture dish and pot experiments were conducted and the compounds in the products were identified by gas chromatography-mass spectrometry (GC-MS). Culture dish experiments showed that the mycelial growth, sclerotia formation amount and total weight of Rhizoctonia cerealis were promoted at concentrations of 0.03, 0.06 and 0.12 g mL-1 and inhibited at concentration of 0.48 g mL-1 of the decomposed products. No significant effects were found of the product concentrations on average weight of the sclerotia. Mycelial growth of Gaeumannomyces graminis was promoted at almost all concentrations except the highest one. Mycelial growth and spore germination of Bipolaris sorokiniana were significantly inhibited by all concentrations of the decomposed products, with enhanced inhibition effects along with the increased concentrations. The length, number and dry weight of roots together with the root superoxide dismutase activity were promoted by the lowest concentration (0.03 g mL-1), with a synthetic effect index of 0.012, and inhibited by other concentrations. The ion leakage of roots was increased and the root peroxidase activity of roots was lowered by all the treatments. Pot experiments revealed that occurrence of the sharp eyespot was reduced by 0.03 and 0.06 g mL-1 of decomposed products after irrigation. However, the incidence rates and disease indexes were significantly increased by 0.12, 0.24 and 0.48 g mL-1 of decomposed products. The results indicated that incidence rates and disease indexes of the take-all were significantly promoted after being irrigated with the decomposed products, while occurrences of the common rot didn't change, significantly. GC-MS results showed that the compounds of the decomposed products included organic acids, esters, hydrocarbons, amides and aldehydes, with the proportions 25.26, 24.01, 17.22, 14.39 and 7.73%, respectively. Further analysis investigated that the allelochemicals identified in straw decomposed products contained p-hydroxybenzoic acid (9.21%), dibutyl phthalate (6.94%), 3-phenyl-2-acrylic (5.06%), 4-hydroxy-3,5-dimethoxybenzoic acid (2.26%), hexanoic acid (1.73%), 8-octadecenoic acid (1.06%), 3-(4-hydroxy-3-methoxy-phenyl)-2-propenoic acid (1.04%), 4-hydroxy-3-methoxy-benzoic acid (0.94%) and salicylic acid (0.94%).
基金financially supported by the Special Fund for Agro-Scientific Research in the Public Interest of China(201203030)the 2010 Innovation Group Program of Northwest A&F University,China
文摘The sustainability of the wheat-maize rotation is important to China's food security. Intensive cropping without recycling crop residues or other organic inputs results in the loss of soil organic matter (SOM) and nutrients, and is assumed to be non- sustainable. We evaluated the effects of nine different treatments on yields, nitrogen use efficiency, P and K balances, and soil fertility in a wheat-maize rotation system (1991-2010) on silt clay loam in Shaanxi, China. The treatments involved the application of recommended dose of nitrogen (N), nitrogen and phosphorus (NP), nitrogen and potassium (NK), phosphorus and potassium (PK), combined NPK, wheat or maize straw (S) with NPK (SNPK), or dairy manure (M) with NPK (M1NPK and M2NPK), along with an un-treated control treatment (CK). The mean yields of wheat and maize ranged from 992 and 2 235 kg ha-1 under CK to 5 962 and 6 894 kg ha-1 under M2NPK treatment, respectively. Treatments in which either N or P was omitted (N, NK and PK) gave significantly lower crop yields than those in which both were applied. The crop yields obtained under NP, NPK and SNPK treatments were statistically identical, as were those obtained under SNPK and MNPK. However, M2NPK gave a significant higher wheat yield than NP, and MNPK gave significant higher maize yield than both NP and NPK. Wheat yields increased significantly (by 86 to 155 kg ha-1 yr-1) in treatments where NP was applied, but maize yields did not. In general, the nitrogen use efficiency of wheat was the highest under the NP and NPK treatments; for maize, it was the highest under MNPK treatment. The P balance was highly positive under MNPK treatment, increasing by 136 to 213 kg ha-1 annually. While the K balance was negative in most treatments, ranging from 31 to 217 kg ha^-1 yr^-1, levels of soil available K remained unchanged or increased over the 20 yr. SOM levels increased significantly in all treatments. Overall, the results indicated that combinations of organic manure and inorganic nitrogen, or retuming straw with NP is likely to improve soil fertility, increasing the yields achievable with wheat-maize system in a way which is environmentally and agronomically beneficial on the tested soil.
基金Chinese Academy of Sciences (No. KSCXZ-YW-N-059 and KSCX1-YW-03)the National Natural Science Foundation of China (No. 30330390 and 30521001)the State Key Basic Research and Development Plan of China (No.2005CB 120904
文摘Wheat is a staple food crop in the world as well as in China. Because of the progress of wheat breeding and other agricultural "sci-technologies, the wheat grain yield per unit area has increased more than five folds from 1952 to 2006 in China. The first part of this article briefly reviews the history of wheat breeding in China. Second, the establishment of "Triticum aestivum-Agropyron" distant hybridization system and its contribution to wheat production and breeding in China are summarized. Finally, the future challenges of wheat breeding are discussed, which include how to increase the utilization efficiencies of water, soil nutrient and light energy through breeding. As an example, our research progress on how to increase light use efficiency in wheat through breeding is introduced and discussed.
基金funded by the National Scientific and Technological Supporting Scheme,China (2013BAD05B02 )the Demonstration Plan of Modern Agriculture of Chinese Academy of Sciences (CXJQ120108-2)the support by the Sino-German Center for Research Promotion,Germany (GZ 1149)
文摘In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to realize high crop productivity. Using the vast water resources of the saline upper aquifer for irrigation during WW jointing stage, may help to bridge the peak of dry season and relieve the tight water situation in the region. A field experiment was conducted during 2009-2012 to investigate the effects of saline irrigation during WW jointing stage on soil salt accumulation and productivity of WW and SM. The experiment treatments comprised no irrigation (T1), fresh water irrigation (T2), slightly saline water irrigation (T3:2.8 dS m-l), and strongly saline water irrigation (T4:8.2 dS m-1) at WW jointing stage. With regard to WW yields and aggregated annual WW-SM yields, clear benefits of saline water irrigation (T3 & T4) compared to no irrigation (T1), as well as insignificant yield losses compared to fresh water irrigation (T2) occurred in all three experiment years. However, the increased soil salinity in eady SM season in consequence of saline irrigation exerted a negative effect on SM photosynthesis and final yield in two of three experiment years. To avoid the negative aftereffects of saline irrigation, sufficient fresh water irrigation during SM sowing phase (i.e., increase from 60 to 90 mm) is recommended to guarantee good growth conditions during the sensitive early growing period of SM. The risk of long-term accumulation of salts as a result of saline irrigation during the peak of dry season is considered low, due to deep leaching of salts during regularly occurring wet years, as demonstrated in the 2012 experiment year. Thus, applying saline water irrigation at jointing stage of WW and fresh water at sowing of SM is most promising to realize high yield and fresh irrigation water saving.
基金supported by the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD09B01)the National Basic Research Program of China (973 Program, 2012CB955904)the National Science Foundation for Young Scientists of China (41401510)
文摘Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model(SEBAL) and crop information for assessment of regional crop(summer maize and winter wheat) actual evapotranspiration(ET a) in Huang-Huai-Hai(3H) Plain, China. The average seasonal ET a of summer maize and winter wheat were 354.8 and 521.5 mm respectively in 3H Plain. A high-ET a belt of summer maize occurs in piedmont plain, while a low ET a area was found in the hill-irrigable land and dry land area. For winter wheat, a high-ET a area was located in the middle part of 3H Plain, including low plain-hydropenia irrigable land and dry land, hill-irrigable land and dry land, and basin-irrigable land and dry land. Spatial analysis demonstrated a linear relationship between crop ET a, normalized difference vegetation index(NDVI), and the land surface temperature(LST). A stronger relationship between ET a and NDVI was found in the metaphase and last phase than other crop growing phase, as indicated by higher correlation coefficient values. Additionally, higher correlation coefficients were detected between ET a and LST than that between ET a and NDVI, and this significant relationship ran through the entire crop growing season. ET a in the summer maize growing season showed a significant relationship with longitude, while ET a in the winter wheat growing season showed a significant relationship with latitude. The results of this study will serve as baseline information for water resources management of 3H Plain.