In this study, three wheat varieties were tested to determine seed germination and the incidence of Magnaporthe oryzae triticum (MoT). Among these varieties, BARI Gom 24 (Prodip) wheat seed exhibited the highest seed ...In this study, three wheat varieties were tested to determine seed germination and the incidence of Magnaporthe oryzae triticum (MoT). Among these varieties, BARI Gom 24 (Prodip) wheat seed exhibited the highest seed germination rate (93%) but also had the highest incidence (30%) of MoT. To manage blast disease in an ecofriendly manner, seven treatments were employed: T<sub>1</sub> = Control, T<sub>2</sub> = Garlic clove extracts, T<sub>3</sub> = Aloe vera leaf extracts, T<sub>4</sub> = Black cumin seed extracts, T<sub>5</sub> = Neem leaf extracts, T<sub>6</sub> = Nativo 75 WG, and T<sub>7</sub> = Provax 200 WP. The experiment was conducted using a Randomized Complete Block Design (RCBD) layout with three replications using Prodip wheat variety that exhibited highest MoT infection severity based on laboratory analysis among collected varieties. Data were collected on blast disease incidence (%), disease severity, and various growth and yield parameters of wheat. The experiment’s results indicated that among all the treatments, T<sub>7</sub> (Seed treatment with Provax 200 WP) and T<sub>5</sub> (Foliar spraying with Neem leaf extract) performed better in controlling blast disease in wheat. The lowest blast disease incidence (%) was observed with T<sub>7</sub> (Provax 200 WP), with values of 7.86, 9.86, and 10.19 recorded during the milking stage, soft dough stage, and hard dough stage of wheat, respectively. T<sub>5</sub> (Neem leaf extract) also demonstrated a statistically equivalent reduction in blast disease incidence (%). In terms of disease severity, T<sub>7</sub> (Seed treatment with Provax 200 WP) showed the lowest values of 1.03, 1.23, and 1.63 during the milking stage, soft dough stage, and hard dough stage of wheat, respectively. Foliar spraying with neem leaf extract also exhibited similar result as of Provax 200 WP regarding panicle blast severity. As a result of these findings, it can be concluded that T<sub>5</sub> (Neem leaf extract) is recommended as an ecofriendly management approach for blast disease in wheat.展开更多
There are a limited number of herbicide options available for durum wheat production in Ontario, Canada. Four field studies were conducted in Ontario, Canada over a three year period (2008, 2009 and 2010) to evaluate ...There are a limited number of herbicide options available for durum wheat production in Ontario, Canada. Four field studies were conducted in Ontario, Canada over a three year period (2008, 2009 and 2010) to evaluate the sensitivity of spring planted durum wheat to post-emergence (POST) applications of dichlorprop/2,4-D, dicamba/ MCPA/mecoprop, clopyralid, bromoxynil/MCPA, pyrasulfotole/bromoxynil, thifensulfuron/tribenuron + MCPA amine, fluroxypyr + MCPA ester, tralkoxydim and fenoxaprop-p-ethyl/safener at the manufacturers’ recommended dose and twice that dose. Visible injury in durum wheat were 0 to 2.4% with dichlorprop/2,4-D, 0 to 6% with dicamba/MCPA/mecoprop, 0 to 0.4% injury with clopyralid, 0 to 1.4% injury with bromoxynil/MCPA, 0 to 3.5% with pyrasulfotole/bromoxynil, 0 to 5% with thifensulfuron/tribenuron + MCPA amine, 0 to 2.6% with fluroxypyr + MCPA ester, 0 to 5% with tralkoxydim and 0.4% to 8% with fenoxaprop-pethyl/safener at various evaluation dates (1, 2, 3 and 4 weeks after treatment). Durum wheat height was decreased as much as 5% with dicamba/ MCPA/mecoprop, 4% with pyrasulfotole/bromoxynil and 6% with fenoxaprop-pethyl/safener but was not affected with other herbicides evaluated. There was no decrease in durum wheat yield with the herbicides evaluated.展开更多
Identifying stable quantitative trait loci(QTLs)for yield-related traits across populations and environments is crucial for wheat breeding and genetic studies.Consensus maps also play important roles in wheat genetic ...Identifying stable quantitative trait loci(QTLs)for yield-related traits across populations and environments is crucial for wheat breeding and genetic studies.Consensus maps also play important roles in wheat genetic and genomic research.In the present study,a wheat consensus map was constructed using a doubled haploid(DH)population derived from Jinghua 1×Xiaobaidongmai(JX),an F_(2)population derived from L43×Shanxibaimai(LS)and the BAAFS Wheat 90K SNP array single nucleotide polymorphism(SNP)array.A total of 44,503 SNP markers were mapped on the constructed consensus map,and they covered 5,437.92 cM across 21 chromosomes.The consensus map showed high collinearity with the individual maps and the wheat reference genome IWGSC RefSeq v2.1.Phenotypic data on eight yield-related traits were collected in the JX population,as well as the F_(2:3)and F_(2:4)populations of LS,in six,two and two environments,respectively,and those data were used for QTL analysis.Inclusive composite interval mapping(ICIM)identified 32 environmentally stable QTLs for the eight yield-related traits.Among them,four QTLs(QPH.baafs-4B,QKNS.baafs-4B,QTGW.baafs-4B,and QSL.baafs-5A.3)were detected across mapping populations and environments,and nine stable QTLs(qKL.baafs-1D,QPH.baafs-2B,QKNS.baafs-3D,QSL.baafs-3D,QKW.baafs-4B,QPH.baafs-5D,QPH.baafs-6A.1,QSL.baafs-6A,and QSL.baafs-6D)are likely to be new.The physical region of 17.25–44.91 Mb on chromosome 4B was associated with six yield-related traits,so it is an important region for wheat yield.The physical region around the dwarfing gene Rht24 contained QTLs for kernel length(KL),kernel width(KW),spike length(SL),and thousand-grain weight(TGW),which are either from a pleiotropic effect of Rht24 or closely linked loci.For the stable QTLs,254 promising candidate genes were identified.Among them,TraesCS5A03G1264300,TraesCS1B03G0624000 and TraesCS6A03G0697000 are particularly noteworthy since their homologous genes have similar functions for the corresponding traits.The constructed consensus map and the identified QTLs along with their candidate genes will facilitate the genetic dissection of wheat yield-related traits and accelerate the development of wheat cultivars with desirable plant morphology and high yield.展开更多
Chile has high potential to produce quality durum wheat;however, it is not self-sufficient. It is necessary to increase durum grain yield in the Mediterranean rainfed areas which are characterized by adverse environme...Chile has high potential to produce quality durum wheat;however, it is not self-sufficient. It is necessary to increase durum grain yield in the Mediterranean rainfed areas which are characterized by adverse environmental conditions, mainly, water deficit. The criteria normally used by breeders to select varieties of wheat for these environments are yield under stress and early flowering. The objective of this monograph is to propose that the selection of high yielding genotypes of durum wheat, under Chilean Mediterranean rainfed conditions, be assisted by morphological and physiological traits associated with yield in order to increase its heritability.展开更多
The genetic variability is considered as the major principle of plant breeding for durum wheat. This variability can be induced in vitro by selection pressure exerted by stress factors such as salinity in order to reg...The genetic variability is considered as the major principle of plant breeding for durum wheat. This variability can be induced in vitro by selection pressure exerted by stress factors such as salinity in order to regenerate the vitro plantlets tolerant. This study aims in the first step in the regeneration of plantlets tolerant to salinity from mature embryos culture derived from two Tunisian durum wheat varieties: improved (Razzek) and landrace (Jenah Khotifa (JK)) varieties. The tolerance evaluation to salt stress was applied in vitro (100 mmol·l-1 NaCl) and was based on various parameters. Our results showed that JK variety was distinguished by a stable response for all parameters tested: average weight of callus (368.1 mg for control and 307 mg under salt stress), callus regenerated percentage (36.6% for control and 35.7% under salt stress) and green shoots number/callus (17 for control and 17 under salt stress). This stability of response translates the adaptability of this variety to salinity. In order to fix regenerated JK plantlets in single generation and obtain HDs homozygous stable lines, in vitro gynogenesis technical is tested for this genotype. The Evaluation of gynogenetic capacity focused on about 1200 unfertilized ovaries of JK and was based on its ability to induction, differentiation, development of green shoots, and haploid plantlets regeneration. JK showed good tolerance to salinity and a relatively good response to gynogenesis.展开更多
The aim of this work is to identify the effect of lead on germinal parameters and the antioxidant enzyme activities (lipase, peroxidase and catalase) in durum wheat Triticum durum Desf. cv (waha, vitron and gta) e...The aim of this work is to identify the effect of lead on germinal parameters and the antioxidant enzyme activities (lipase, peroxidase and catalase) in durum wheat Triticum durum Desf. cv (waha, vitron and gta) exposed to the concentrations of 0, 0.15, 0.25 and 0.3 g/L of Pb (NO3)2 during germination process. The obtained results showed that lead reduced the germination, root and aerial biomass. The concentration of 0.3 g/L inhibited completely the germination of the three varieties. It also slowed lipase activity, the degradation of lipids of the seed's reserves and disrupted the metabolism of peroxidase and catalase. Concerning the behavior of the three varieties studied, it appears that the Vitron is the best predisposed variety to stand against lead stress by its strong antioxidant defense system.展开更多
The aim of this study was to determine the GY (grain yield) and some quality characters of durum wheat landraces under Thrace Region ecological conditions. This study was carried out in randomized complete blocks desi...The aim of this study was to determine the GY (grain yield) and some quality characters of durum wheat landraces under Thrace Region ecological conditions. This study was carried out in randomized complete blocks design with three replications in the locations of Tekirdag, Edirne, Klrklareli and Lüleburgaz during the growing years of 2009 and 2010. In the research, 20 durum wheat landraces obtained from different regions of Turkey and 5 obsolete durum wheat cultivars were used as the experimental material. It was determined that the GY, TW (test weight) and PC (protein content) in the first year were higher than the second year in this study. The highest values for GY, TGW (thousand grain weight), and TW and GVR (grain vitreousness rate) were determined in Tekirdag location, while the highest PC was determined in Edirne location. The results of the research showed that GY varied between 321.17-470.33 kg da^-1 in Tekirdag, 301.33-404.00 kg da^-1 in Edirne;197.50-334.67 kg da^-1 in K?rklareli and 280.00-501.33 kg da^-1 in Lüleburgaz. TGWs were determined between 38.17-44.50 g of Tekirdag, 36.00-43.00 g of Edirne, 38.43-43.67 g of Karklareli and 35.33-45.67 g of Lüleburgaz. TW of Tekirdag, Edirne, Karklareli and Lüleburgaz locations changed between 74.67-79.33 kg hl^-1, 69.33-76.83 kg hl^-1, 70.00-75.17 kg hl^-1 and 71.00-77.50 kg hl^-1, respectively. The GVR was determined among 85.00-96.83% in Tekirdag, 68.33-93.33% in Edirne, 67.83-93.83% in Klrklareli, and 85.17-98.17% in Lüleburgaz. The PC of grains was measured among 13.32-14.95% in Tekirdag, 14.90-16.25% in Edirne, 14.27-16.17% in K?rklareli, and 13.40-16.53% in Lüleburgaz. It was determined that Dicle and Dicle-13 landraces for GY and TW, Adlyaman landrace for TGW,Canakkale and Akbugday landraces for the GVR, and Iskenderun, Akbu?day, Erzincan landraces for PC have the highest values.展开更多
The High Molecular Weight HMW-GS and Low-Molecular-Weight LMW-GS Glutenin Subunits are major determinants of wheat dough processing qualities. Tilling populations was generated by EMS mutagenesis from Chaml durum vari...The High Molecular Weight HMW-GS and Low-Molecular-Weight LMW-GS Glutenin Subunits are major determinants of wheat dough processing qualities. Tilling populations was generated by EMS mutagenesis from Chaml durum variety. Protein quality was investigated by SDS sedimentation, protein content, gluten content and thousand kernel weights. 21 mutants were selected from 1,500 lines of tilling population depending on the variations of their electrophoresis profiles. The analysis of Glu-B 1 HMW-GS has showed two types of profiles: lines deficient on Bx7 and lines with expression of new protein between (Bx7-ByS) allelic pair combination. The majority of these mutant lines have showed quality compounds associated with bad technological characteristics like the parent Cham l with the exception of two mutant lines expressing new protein that have significantly stronger gluten properties an one mutant deficient on Bx7 HMW-GS that developed high value of SDS. For Glu-B3 LMW-GS coding for LMW glutenin type 1 and 2, new mutant line showing expression of new protein pattern. The mutant showing over-expression of bands on gel SDS-PAGE for LMW typel like Chaml, have produced the highest protein and gluten content, while the new mutant showing new profile have showed high value of Gluten and SDS.展开更多
Short coleoptiles associated with GA-insensitive Rht-1 alleles in wheat reduces yield due to poor seedling establishment under dry, or stubble-retained conditions. Hence there is a need for alternative dwarfing genes ...Short coleoptiles associated with GA-insensitive Rht-1 alleles in wheat reduces yield due to poor seedling establishment under dry, or stubble-retained conditions. Hence there is a need for alternative dwarfing genes for wheat improvement programs. GA-sensitive dwarfing gene Rht14 confers semidwarf stature in wheat while retaining longer coleoptiles and early seedling vigor. Two RIL populations were used to identify the map position of Rht14 and to estimate its effect on plant height, coleoptile length, seedling shoot length,spike length and internode length. Rht14 on chromosome 6 A was mapped in the genomic region 383–422 Mbp flanked by GA2oxA9 and wmc753 in a Bijaga Yellow/Castelporziano RIL population. Recombination events between Rht14 and GA2oxA9 in the RIL population indicated that Rht14 might not be allelic to GA2oxA9. The conserved DNA sequence of GA2oxA9 and its flanking region in Castelporziano also suggested that the point of mutation responsible for the Rht14 allele must be a few Mbp away from GA2oxA9. The dwarfing effects of Rht14 on plant height, internode length and seedling vigor were compared with those of Rht-B1 b in an HI 8498/Castelporziano RIL population. Both genes significantly reduced plant height and internode length. Rht-B1 b conferred a significant reduction in coleoptile length and seedling shoot length, whereas Rht14 reduced plant height, but not coleoptile and seedling shoot length. Therefore, Rht14 can be a used as an alternative to Rht-B1 b for development of cultivars suitable for deeper sowing in dry environments and in conditions of conservation agriculture where crop residues are retained.展开更多
Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was con...Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems:conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0-12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield.展开更多
Drought is a major constraint in many wheat( Triticum aestivum L.) production regions. Quantitative trait loci (QTLs) conditioning drought tolerance at stages of germination and seedling in wheat were identified in...Drought is a major constraint in many wheat( Triticum aestivum L.) production regions. Quantitative trait loci (QTLs) conditioning drought tolerance at stages of germination and seedling in wheat were identified in a double haploid (DH) population derived from the cross, Hanxuan10×Lumai14, using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Interval mapping analysis revealed that QTLs for drought tolerance at germination stage were located on chromosomes 1B, 2B, 5A, 6B, 7A and 7B, respectively, and the most effective QTL was mapped on chromosome 2B, explaining 27.2% of phenotypic variance. The QTLs for drought tolerance at seedling stage were located on 1B, 3B and 7B, respectively, and the most effective QTL was mapped on chromosome 3B, explaining 21.6% of phenotypic variance. Their positions were different from those of QTLs conferring drought tolerance at germination stage, indicating that drought tolerance at germination stage and seedling stage was controlled by different loci. Most of the identified QTLs explained 18% or more of phenotypic variance for drought tolerance at germination and seedling stage, and would be useful in future for marker assisted selection programs and cultivar improvement.展开更多
Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedse...Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedset rates for hybrids of LDN with AS60 were 36.87% and 49.45% in 2005 and 2006, respectively. Similar or higher selfed seedset rates were observed in the hybrids of 1D (1A), 1D (1B), 3D (3A), 4D (4B), 7D (7A), and 2D (2B) with AS60, while lower in hybrids of 3D (3B) + 3BL, 5D (5A) + 5AL, 5D (5B) + 5B and 6D (6B) + 6BS with AS60 compared with the hybrids of LDN with AS60. Observation of male gametogenesis showed that meiotic restitution, both first-division restitution (FDR) and single-division meiosis (SDM) resulted in the formation of functional unreduced gametes, which in turn produced seeds. Both euhaploid and aneuhaploid gametes were produced in F1 hybrids. This suggested a strategy to simultaneously transfer and locate major genes from the ancestral species T. turgidum or Ae. tauschii. Moreover, there was no significant difference in the aneuhaploid rates between the F1 hybrids of LDN and LDN DS lines with AS60, suggesting that meiotic pairing between the two D chromosomes in the hybrids of LDN DS lines with AS60 did not promote the formation of aneuhaploid gametes.展开更多
Three coding sequences of gliadins genes, designed as Gli2_Dul, Gli2_Du2 and Gli2_Du3, were isolated from the genomic DNA of Triticum durum accessions CItr5083. Gli2_Dul and Gli2_Du2 contain 945 and 864 bp, encoding t...Three coding sequences of gliadins genes, designed as Gli2_Dul, Gli2_Du2 and Gli2_Du3, were isolated from the genomic DNA of Triticum durum accessions CItr5083. Gli2_Dul and Gli2_Du2 contain 945 and 864 bp, encoding the mature proteins with 314 and 287 amino acid residues, respectively. Gli2_Du3 is recognized as a pseudogene due to the stop codon occurring in the coding region. The pseudogenes, commonly occurring in gliadins family, are attributed to the single base change C→T. The amino acid sequences deduced from these gene sequences were characterized with the typical structure of α-gliadin proteins, including the toxic sequences (PSQQQP). The peptide fraction PF(Y)PP(Q)is thought to be an extra unit of repetitive domain, slightly diverging from the previous report. Six cysteine residues were observed within two unique domains. Phylogenetic analysis showed Gli2_Du2 and Gli2_Du3 were closely related to the genes on chromosome 6A, whereas Gli2_Dul seems to be more homologous with the genes on chromosome 6B.展开更多
Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen applica...Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen application rates on wheat(Triticum aestivum L.) rhizosphere soil microorganisms and enzyme activities, and their temporal variations in relation to soil fertility under supplemental irrigation conditions in a fluvo-aquic region. For this, we established a split-plot experiment for two consecutive years(2014–2015 and 2015–2016) in the field with three levels of soil moisture: water deficit to no irrigation(W1), medium irrigation to(70±5)% of soil relative moisture after jointing stage(W2), and adequate irrigation to(80±5)% of soil relative moisture after jointing stage(W3);and three levels of nitrogen: 0 kg ha^–1(N1), 195 kg ha^–1(N2) and 270 kg ha^–1(N3). Results showed that irrigation and nitrogen application significantly increased rhizosphere microorganisms and enzyme activities. Soil microbiological properties showed different trends in response to N level;the highest values of bacteria, protease, catalase and phosphatase appeared in N2, while the highest levels of actinobacteria, fungi and urease were observed in N3. In addition, these items performed best under medium irrigation(W2) relative to W1 and W3;particularly the maximum microorganism(bacteria, actinobacteria and fungi) amounts appeared at W2, 5.37×10^7 and 6.35×10^7 CFUs g^–1 higher than those at W3 in 2014–2015 and 2015–2016, respectively;and these changes were similar in both growing seasons. Microbe-related parameters fluctuated over time but their seasonality did not hamper the irrigation and fertilization-induced effects. Further, the highest grain yields of 13 309.2 and 12 885.7 kg ha^–1 were both obtained at W2 N2 in 2014–2015 and 2015–2016, respectively. The selected properties, soil microorganisms and enzymes, were significantly correlated with wheat yield and proved to be valuable indicators of soil quality. These results clearly demonstrated that the combined treatment(W2 N2) significantly improved soil microbiological properties, soil fertility and wheat yield on the Huanghuai Plain, China.展开更多
Through regulating target genes via the mechanisms of posttranscriptional cleavage or translational repression, plant miRNAs involve diverse biological processes associating with plant growth, development, and abiotic...Through regulating target genes via the mechanisms of posttranscriptional cleavage or translational repression, plant miRNAs involve diverse biological processes associating with plant growth, development, and abiotic stress responses, in this study, we functionally characterized TaMIR1119, a miRNA family member of wheat (Triticum aestivum), in regulating the drought adaptive response of plants. TaMIR1119 putatively targets six genes categorized into the functional classes of transcriptional regulation, RNA and biochemical metabolism, trafficking, and oxidative stress defense. Upon simulated drought stress, the TaMIR1119 transcripts abundance in roots was drastically altered, showing to be upregulated gradually within a 48-h drought regime andthat the drought-induced transcripts were gradually restored along with a 48-h recovery treatment. In contrast, most miRNA target genes displayed reverse expression patterns to TaMIR1119, exhibiting a downregulated expression pattern upon drought and whose reduced transcripts were re-elevated along with a normal recovery treatment. These expression analysis results indicated that TaMIR1119 responds to drought and regulates the target genes mainly through a cleavage mechanism. Under drought stress, the tobacco lines with TaMIR1119 overexpression behaved improved phenotypes,, showing increased plant biomass, photosynthetic parameters, osmolyte accumulation, and enhanced antioxidant enzyme (AE) activities relative to wild type. Three AE genes, NtFeSOD, NtCAT1;3, and NtSOD2,1, encoding superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) proteins, respectively, showed upregulated expression in TaMIR1119 overexpression lines, suggesting that they are involved in the regulation of AE activities and contribution to the improved cellular reactive oxygen species (ROS) homeostasis in drought-challenged transgenic lines. Our results indicate that TaMIR1119 plays critical roles in regulating plant drought tolerance through transcriptionally regulating the target genes that modulate osmolyte accumulation, photosynthetic function, and improve cellular ROS homeostasis of plants.展开更多
The relationship between vernalization requirement and quantitative and qualitative changes in total leaf soluble proteins were determined in one spring (cv. Kohdasht) and two winter (cvs. Sardari and Norstar) cul...The relationship between vernalization requirement and quantitative and qualitative changes in total leaf soluble proteins were determined in one spring (cv. Kohdasht) and two winter (cvs. Sardari and Norstar) cultivars of wheat (Triticum aestivum L.) exposed to 4℃. Plants were sampled on days 2, 14, 21 and 35 of exposure to 4℃. The final leaf number (FLN) was determined throughout the vernalization periods (0, 7, 14, 24, and 35 d) at 4℃. The final leaf number decreased until days 24 and 35 in Sardari and Norstar eultivars, respectively, indicating the vernalization saturation at these times. No clear changes were detected in the final leaf number of Kohdash cultivar, verifying no vernalization requirement for this spring wheat cultivar. Comparing with control, clear cold-induced 2-fold increases in proteins quantity occurred after 48 h following the 4℃-treatment in the leaves of the both winter wheat cultivars but, such response was not detected in the spring cultivar. However, the electrophoretic protein patterns showed between-cultivar and between-temperature treatment differences. With increasing exposure time to 4℃, the winter cultivars tended to produce more HMW polypeptides than the spring cultivar. Similar proteins were induced in both Sardari and Norstar winter wheat cultivars, however, the long vernalization requirement in Norstar resulted in high level and longer duration of expression of cold-induced proteins compared to Sardari with a short vernalization requirement. These observations indicate that vernalization response regulates the expression of low temperature (LT) tolerance proteins and determines the duration of expression of LT- induced proteins.展开更多
Allelic variation in two domestic wheat landraces, Pingyaobaimai and Mazhamai, two cornerstone breeding materials and their derived cultivars with drought tolerance was detected by SSR (simple sequence repeat) markers...Allelic variation in two domestic wheat landraces, Pingyaobaimai and Mazhamai, two cornerstone breeding materials and their derived cultivars with drought tolerance was detected by SSR (simple sequence repeat) markers. The clustering of 25 accessions showed that the similarity between Pingyaobaimai and Yandal817, the latter was developed from the former, was 0.71, the highest one of all accessions, but the similarities were very low between these two accessions and other accessions including their derived cultivars. A similar situation was revealed between Mazhamai and its derived cultivars. Pingyaobaimai and its three derived cultivars shared three alleles at loci Xgwm526, Xgwm538 and Xgwm126 on chromosome arms 2BL, 4BL and 5AL, respectively. There were six shared alleles in Mazhamai and its derived cultivars, in order of Xgwm157, Xgwm126, Xgwm212, Xgwm626, Xgwm471 and Xgwm44 on chromosome arms 2DL, 5AL, 5DL, 6BL, 7AS and 7DC, respectively. Only one shared allele was detected between the pedigrees of Pingyaobaimai and Mazhamai. The difference of shared alleles in two cornerstone breeding materials and their derived cultivars revealed the diversity in Chinese wheat germplasm with drought tolerance and the complication in genetic basis of drought tolerance in wheat.展开更多
In this study, 14 wheat cultivars with contrasting yield and N use efficiency (NUE) were used to investigate the agronomic and NUE-related traits, and the N assimilation-associated enzyme activities under low and hi...In this study, 14 wheat cultivars with contrasting yield and N use efficiency (NUE) were used to investigate the agronomic and NUE-related traits, and the N assimilation-associated enzyme activities under low and high N conditions. Under deficient-N, the cultivars with high N uptake efficiency (UpE) and high N utilization efficiency (UtE) exhibited higher plant biomass, yields, and N contents than those with medium and low NUEs. The high UpE cultivars accumulated more N than other NUE type cultivars. Under sufficient-N, the tested cultivars showed similar patterns in biomass, yield, and N content to those under deficient-N, but the varietal variations in above traits were smaller. In addition, the high UpE cultivars displayed much more of root biomass and larger of root length, surface area, and volume than other NUE type cultivars, indicating that the root morphological traits under N deprivation are closely associated with the plant biomass through its improvement of the N acquisition. The high UtE cultivars showed higher activities of nitrate reductase (NR), nitrite reductase (NIR), and gluta- mine synthetase (GS) at stages of seediling, heading and filling than other NUE type cultivars under both low and high N conditions. Moreover, the high UpE and UtE cultivars also displayed higher photosynthetic rate under deficient-N than the medium and low NUE cultivars. Together, our results indicated that the tested wheat cultivars possess dramatically genetic variations in biomass, yield, and NUE. The root morphological traits and the N assimilation enzymatic acitivities play critical roles in regulating N accumulation and internal N translocation under the N-starvation stress, respectively. They can be used as morphological and biochemical references for evaluation of UpE and UtE in wheat.展开更多
Clustering genotype × environment(GE) interactions and understanding the causes of GE interactions are among the most important tasks in crop breeding programs. Pattern analysis(cluster and ordination techniques)...Clustering genotype × environment(GE) interactions and understanding the causes of GE interactions are among the most important tasks in crop breeding programs. Pattern analysis(cluster and ordination techniques) was applied to analyze GE interactions for grain yield of 24 durum wheat(Triticum turgidum L. var. durum) genotypes(breeding lines and old and new cultivars) along with a popular bread wheat(Triticum aestivum) cultivar grown in 21 different rainfed environments during the 2010–2013 cropping seasons. To investigate the causes of GE interaction, several genotypic and environmental covariables were used. In a combined ANOVA, environment was the predominant source of variation,accounting for 81.2% of the total sum of squares(TSS), and the remaining TSS due to the GE interaction effect was almost seven times that of the genetic effect. Cluster analysis separated the environments into four groups with similar discriminating ability among genotypes, and genotypes into five groups with similar patterns in yield performance.Pattern analysis confirmed two major environmental clusters(cold and warm), and allowed the discrimination and characterization of genotype adaptation. Within the cold-environment cluster, several subclusters were identified. The breeding lines were most adapted to moderate and warm environments, whereas the old varieties were adapted to cold environments. The results indicated that winter rainfall and plant height were among the environmental and genotypic covariables, respectively, that contributed most to GE interaction for grain yield in rainfed durum wheat.展开更多
Heading date was an important trait that decided the adaptation of wheat to environments. It was modiifed by genes involved in vernalization response, photoperiod response and development rate. In this study, four loc...Heading date was an important trait that decided the adaptation of wheat to environments. It was modiifed by genes involved in vernalization response, photoperiod response and development rate. In this study, four loci Xgwm261, Xgwm219, Xbarc23 and Ppd-D1 which were previously reported related to heading time were analyzed based on three groups of wheat including landraces (L), varieties bred before 1983 (B82) and after 1983 (A83) collected from Chinese wheat growing areas. Generally, heading date of landrace was longer than that of varieties. Signiifcant differences in the heading time existed within the groups, which implied that diversiifcation selection was much helpful for adaptation in each wheat zone. Photoperiod insensitive allele Ppd-D1a was the ifrst choice for both landrace and modern varieties, which promoted the heading date about four days earlier than that of sensitive allele Ppd-D1b. The three SSR loci had different characters in the three groups. Predominant allele combination for each zone was predicted for wheat group L and A83, which made great contribution to advantageous traits. Xgwm219 was found to be signiifcantly associated with heading date in Yellow and Huai River Winter Wheat Zone (Zone II) and spike length in Middle and lower Yangtze Valley Winter Wheat Zone (Zone III), which implied functional diversiifcation for adaption. Variation for earliness genes provided here will be helpful for whet breeding in future climatic change.展开更多
文摘In this study, three wheat varieties were tested to determine seed germination and the incidence of Magnaporthe oryzae triticum (MoT). Among these varieties, BARI Gom 24 (Prodip) wheat seed exhibited the highest seed germination rate (93%) but also had the highest incidence (30%) of MoT. To manage blast disease in an ecofriendly manner, seven treatments were employed: T<sub>1</sub> = Control, T<sub>2</sub> = Garlic clove extracts, T<sub>3</sub> = Aloe vera leaf extracts, T<sub>4</sub> = Black cumin seed extracts, T<sub>5</sub> = Neem leaf extracts, T<sub>6</sub> = Nativo 75 WG, and T<sub>7</sub> = Provax 200 WP. The experiment was conducted using a Randomized Complete Block Design (RCBD) layout with three replications using Prodip wheat variety that exhibited highest MoT infection severity based on laboratory analysis among collected varieties. Data were collected on blast disease incidence (%), disease severity, and various growth and yield parameters of wheat. The experiment’s results indicated that among all the treatments, T<sub>7</sub> (Seed treatment with Provax 200 WP) and T<sub>5</sub> (Foliar spraying with Neem leaf extract) performed better in controlling blast disease in wheat. The lowest blast disease incidence (%) was observed with T<sub>7</sub> (Provax 200 WP), with values of 7.86, 9.86, and 10.19 recorded during the milking stage, soft dough stage, and hard dough stage of wheat, respectively. T<sub>5</sub> (Neem leaf extract) also demonstrated a statistically equivalent reduction in blast disease incidence (%). In terms of disease severity, T<sub>7</sub> (Seed treatment with Provax 200 WP) showed the lowest values of 1.03, 1.23, and 1.63 during the milking stage, soft dough stage, and hard dough stage of wheat, respectively. Foliar spraying with neem leaf extract also exhibited similar result as of Provax 200 WP regarding panicle blast severity. As a result of these findings, it can be concluded that T<sub>5</sub> (Neem leaf extract) is recommended as an ecofriendly management approach for blast disease in wheat.
文摘There are a limited number of herbicide options available for durum wheat production in Ontario, Canada. Four field studies were conducted in Ontario, Canada over a three year period (2008, 2009 and 2010) to evaluate the sensitivity of spring planted durum wheat to post-emergence (POST) applications of dichlorprop/2,4-D, dicamba/ MCPA/mecoprop, clopyralid, bromoxynil/MCPA, pyrasulfotole/bromoxynil, thifensulfuron/tribenuron + MCPA amine, fluroxypyr + MCPA ester, tralkoxydim and fenoxaprop-p-ethyl/safener at the manufacturers’ recommended dose and twice that dose. Visible injury in durum wheat were 0 to 2.4% with dichlorprop/2,4-D, 0 to 6% with dicamba/MCPA/mecoprop, 0 to 0.4% injury with clopyralid, 0 to 1.4% injury with bromoxynil/MCPA, 0 to 3.5% with pyrasulfotole/bromoxynil, 0 to 5% with thifensulfuron/tribenuron + MCPA amine, 0 to 2.6% with fluroxypyr + MCPA ester, 0 to 5% with tralkoxydim and 0.4% to 8% with fenoxaprop-pethyl/safener at various evaluation dates (1, 2, 3 and 4 weeks after treatment). Durum wheat height was decreased as much as 5% with dicamba/ MCPA/mecoprop, 4% with pyrasulfotole/bromoxynil and 6% with fenoxaprop-pethyl/safener but was not affected with other herbicides evaluated. There was no decrease in durum wheat yield with the herbicides evaluated.
基金funded by the Major Project of Agricultural Biological Breeding,China(2022ZD0401902)the Science and Technology Innovation Project of Beijing Academy of Agriculture and Forestry Sciences,China(KJCX20230301 and KJCX20230307)。
文摘Identifying stable quantitative trait loci(QTLs)for yield-related traits across populations and environments is crucial for wheat breeding and genetic studies.Consensus maps also play important roles in wheat genetic and genomic research.In the present study,a wheat consensus map was constructed using a doubled haploid(DH)population derived from Jinghua 1×Xiaobaidongmai(JX),an F_(2)population derived from L43×Shanxibaimai(LS)and the BAAFS Wheat 90K SNP array single nucleotide polymorphism(SNP)array.A total of 44,503 SNP markers were mapped on the constructed consensus map,and they covered 5,437.92 cM across 21 chromosomes.The consensus map showed high collinearity with the individual maps and the wheat reference genome IWGSC RefSeq v2.1.Phenotypic data on eight yield-related traits were collected in the JX population,as well as the F_(2:3)and F_(2:4)populations of LS,in six,two and two environments,respectively,and those data were used for QTL analysis.Inclusive composite interval mapping(ICIM)identified 32 environmentally stable QTLs for the eight yield-related traits.Among them,four QTLs(QPH.baafs-4B,QKNS.baafs-4B,QTGW.baafs-4B,and QSL.baafs-5A.3)were detected across mapping populations and environments,and nine stable QTLs(qKL.baafs-1D,QPH.baafs-2B,QKNS.baafs-3D,QSL.baafs-3D,QKW.baafs-4B,QPH.baafs-5D,QPH.baafs-6A.1,QSL.baafs-6A,and QSL.baafs-6D)are likely to be new.The physical region of 17.25–44.91 Mb on chromosome 4B was associated with six yield-related traits,so it is an important region for wheat yield.The physical region around the dwarfing gene Rht24 contained QTLs for kernel length(KL),kernel width(KW),spike length(SL),and thousand-grain weight(TGW),which are either from a pleiotropic effect of Rht24 or closely linked loci.For the stable QTLs,254 promising candidate genes were identified.Among them,TraesCS5A03G1264300,TraesCS1B03G0624000 and TraesCS6A03G0697000 are particularly noteworthy since their homologous genes have similar functions for the corresponding traits.The constructed consensus map and the identified QTLs along with their candidate genes will facilitate the genetic dissection of wheat yield-related traits and accelerate the development of wheat cultivars with desirable plant morphology and high yield.
文摘Chile has high potential to produce quality durum wheat;however, it is not self-sufficient. It is necessary to increase durum grain yield in the Mediterranean rainfed areas which are characterized by adverse environmental conditions, mainly, water deficit. The criteria normally used by breeders to select varieties of wheat for these environments are yield under stress and early flowering. The objective of this monograph is to propose that the selection of high yielding genotypes of durum wheat, under Chilean Mediterranean rainfed conditions, be assisted by morphological and physiological traits associated with yield in order to increase its heritability.
文摘The genetic variability is considered as the major principle of plant breeding for durum wheat. This variability can be induced in vitro by selection pressure exerted by stress factors such as salinity in order to regenerate the vitro plantlets tolerant. This study aims in the first step in the regeneration of plantlets tolerant to salinity from mature embryos culture derived from two Tunisian durum wheat varieties: improved (Razzek) and landrace (Jenah Khotifa (JK)) varieties. The tolerance evaluation to salt stress was applied in vitro (100 mmol·l-1 NaCl) and was based on various parameters. Our results showed that JK variety was distinguished by a stable response for all parameters tested: average weight of callus (368.1 mg for control and 307 mg under salt stress), callus regenerated percentage (36.6% for control and 35.7% under salt stress) and green shoots number/callus (17 for control and 17 under salt stress). This stability of response translates the adaptability of this variety to salinity. In order to fix regenerated JK plantlets in single generation and obtain HDs homozygous stable lines, in vitro gynogenesis technical is tested for this genotype. The Evaluation of gynogenetic capacity focused on about 1200 unfertilized ovaries of JK and was based on its ability to induction, differentiation, development of green shoots, and haploid plantlets regeneration. JK showed good tolerance to salinity and a relatively good response to gynogenesis.
文摘The aim of this work is to identify the effect of lead on germinal parameters and the antioxidant enzyme activities (lipase, peroxidase and catalase) in durum wheat Triticum durum Desf. cv (waha, vitron and gta) exposed to the concentrations of 0, 0.15, 0.25 and 0.3 g/L of Pb (NO3)2 during germination process. The obtained results showed that lead reduced the germination, root and aerial biomass. The concentration of 0.3 g/L inhibited completely the germination of the three varieties. It also slowed lipase activity, the degradation of lipids of the seed's reserves and disrupted the metabolism of peroxidase and catalase. Concerning the behavior of the three varieties studied, it appears that the Vitron is the best predisposed variety to stand against lead stress by its strong antioxidant defense system.
文摘The aim of this study was to determine the GY (grain yield) and some quality characters of durum wheat landraces under Thrace Region ecological conditions. This study was carried out in randomized complete blocks design with three replications in the locations of Tekirdag, Edirne, Klrklareli and Lüleburgaz during the growing years of 2009 and 2010. In the research, 20 durum wheat landraces obtained from different regions of Turkey and 5 obsolete durum wheat cultivars were used as the experimental material. It was determined that the GY, TW (test weight) and PC (protein content) in the first year were higher than the second year in this study. The highest values for GY, TGW (thousand grain weight), and TW and GVR (grain vitreousness rate) were determined in Tekirdag location, while the highest PC was determined in Edirne location. The results of the research showed that GY varied between 321.17-470.33 kg da^-1 in Tekirdag, 301.33-404.00 kg da^-1 in Edirne;197.50-334.67 kg da^-1 in K?rklareli and 280.00-501.33 kg da^-1 in Lüleburgaz. TGWs were determined between 38.17-44.50 g of Tekirdag, 36.00-43.00 g of Edirne, 38.43-43.67 g of Karklareli and 35.33-45.67 g of Lüleburgaz. TW of Tekirdag, Edirne, Karklareli and Lüleburgaz locations changed between 74.67-79.33 kg hl^-1, 69.33-76.83 kg hl^-1, 70.00-75.17 kg hl^-1 and 71.00-77.50 kg hl^-1, respectively. The GVR was determined among 85.00-96.83% in Tekirdag, 68.33-93.33% in Edirne, 67.83-93.83% in Klrklareli, and 85.17-98.17% in Lüleburgaz. The PC of grains was measured among 13.32-14.95% in Tekirdag, 14.90-16.25% in Edirne, 14.27-16.17% in K?rklareli, and 13.40-16.53% in Lüleburgaz. It was determined that Dicle and Dicle-13 landraces for GY and TW, Adlyaman landrace for TGW,Canakkale and Akbugday landraces for the GVR, and Iskenderun, Akbu?day, Erzincan landraces for PC have the highest values.
文摘The High Molecular Weight HMW-GS and Low-Molecular-Weight LMW-GS Glutenin Subunits are major determinants of wheat dough processing qualities. Tilling populations was generated by EMS mutagenesis from Chaml durum variety. Protein quality was investigated by SDS sedimentation, protein content, gluten content and thousand kernel weights. 21 mutants were selected from 1,500 lines of tilling population depending on the variations of their electrophoresis profiles. The analysis of Glu-B 1 HMW-GS has showed two types of profiles: lines deficient on Bx7 and lines with expression of new protein between (Bx7-ByS) allelic pair combination. The majority of these mutant lines have showed quality compounds associated with bad technological characteristics like the parent Cham l with the exception of two mutant lines expressing new protein that have significantly stronger gluten properties an one mutant deficient on Bx7 HMW-GS that developed high value of SDS. For Glu-B3 LMW-GS coding for LMW glutenin type 1 and 2, new mutant line showing expression of new protein pattern. The mutant showing over-expression of bands on gel SDS-PAGE for LMW typel like Chaml, have produced the highest protein and gluten content, while the new mutant showing new profile have showed high value of Gluten and SDS.
基金Financial support by the Science and Engineering Research Board,New Delhi under a Start-Up Research grant for Young Scientists(SB/FT/LS-243/2012)to Ravindra Patil
文摘Short coleoptiles associated with GA-insensitive Rht-1 alleles in wheat reduces yield due to poor seedling establishment under dry, or stubble-retained conditions. Hence there is a need for alternative dwarfing genes for wheat improvement programs. GA-sensitive dwarfing gene Rht14 confers semidwarf stature in wheat while retaining longer coleoptiles and early seedling vigor. Two RIL populations were used to identify the map position of Rht14 and to estimate its effect on plant height, coleoptile length, seedling shoot length,spike length and internode length. Rht14 on chromosome 6 A was mapped in the genomic region 383–422 Mbp flanked by GA2oxA9 and wmc753 in a Bijaga Yellow/Castelporziano RIL population. Recombination events between Rht14 and GA2oxA9 in the RIL population indicated that Rht14 might not be allelic to GA2oxA9. The conserved DNA sequence of GA2oxA9 and its flanking region in Castelporziano also suggested that the point of mutation responsible for the Rht14 allele must be a few Mbp away from GA2oxA9. The dwarfing effects of Rht14 on plant height, internode length and seedling vigor were compared with those of Rht-B1 b in an HI 8498/Castelporziano RIL population. Both genes significantly reduced plant height and internode length. Rht-B1 b conferred a significant reduction in coleoptile length and seedling shoot length, whereas Rht14 reduced plant height, but not coleoptile and seedling shoot length. Therefore, Rht14 can be a used as an alternative to Rht-B1 b for development of cultivars suitable for deeper sowing in dry environments and in conditions of conservation agriculture where crop residues are retained.
基金funded by the Ph D Programs Foundation, Ministry of Education, China(20106202110002)the National Public Welfare Foundation for Industry Scheme of China (201103001)the National Natural Science Foundation of China (201131160265)
文摘Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems:conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0-12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield.
文摘Drought is a major constraint in many wheat( Triticum aestivum L.) production regions. Quantitative trait loci (QTLs) conditioning drought tolerance at stages of germination and seedling in wheat were identified in a double haploid (DH) population derived from the cross, Hanxuan10×Lumai14, using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Interval mapping analysis revealed that QTLs for drought tolerance at germination stage were located on chromosomes 1B, 2B, 5A, 6B, 7A and 7B, respectively, and the most effective QTL was mapped on chromosome 2B, explaining 27.2% of phenotypic variance. The QTLs for drought tolerance at seedling stage were located on 1B, 3B and 7B, respectively, and the most effective QTL was mapped on chromosome 3B, explaining 21.6% of phenotypic variance. Their positions were different from those of QTLs conferring drought tolerance at germination stage, indicating that drought tolerance at germination stage and seedling stage was controlled by different loci. Most of the identified QTLs explained 18% or more of phenotypic variance for drought tolerance at germination and seedling stage, and would be useful in future for marker assisted selection programs and cultivar improvement.
基金the National Natural Science Foundation of China (No 30700495)Education Department of Sichuan province (No 07ZZ025)Science and Technology Department of Sichuan province (No 08ZQ026-060)
文摘Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedset rates for hybrids of LDN with AS60 were 36.87% and 49.45% in 2005 and 2006, respectively. Similar or higher selfed seedset rates were observed in the hybrids of 1D (1A), 1D (1B), 3D (3A), 4D (4B), 7D (7A), and 2D (2B) with AS60, while lower in hybrids of 3D (3B) + 3BL, 5D (5A) + 5AL, 5D (5B) + 5B and 6D (6B) + 6BS with AS60 compared with the hybrids of LDN with AS60. Observation of male gametogenesis showed that meiotic restitution, both first-division restitution (FDR) and single-division meiosis (SDM) resulted in the formation of functional unreduced gametes, which in turn produced seeds. Both euhaploid and aneuhaploid gametes were produced in F1 hybrids. This suggested a strategy to simultaneously transfer and locate major genes from the ancestral species T. turgidum or Ae. tauschii. Moreover, there was no significant difference in the aneuhaploid rates between the F1 hybrids of LDN and LDN DS lines with AS60, suggesting that meiotic pairing between the two D chromosomes in the hybrids of LDN DS lines with AS60 did not promote the formation of aneuhaploid gametes.
基金supported by the National High Technology Research and Development Program of China(863 Program,2006AA10Z179,2006AA10ZEF87)National Natural Science Foundation of China(30300219 and 30571163)+2 种基金the Foundation for the Authors of National Excellent Doctoral Dissertation of China(200357 and 200458)supported by the Program for New Century Excellent Talents in Universifies of Chinasupported by the Program for Changjiang Scholars and Innovative Research Teams in Universities of China(IRT0453).
文摘Three coding sequences of gliadins genes, designed as Gli2_Dul, Gli2_Du2 and Gli2_Du3, were isolated from the genomic DNA of Triticum durum accessions CItr5083. Gli2_Dul and Gli2_Du2 contain 945 and 864 bp, encoding the mature proteins with 314 and 287 amino acid residues, respectively. Gli2_Du3 is recognized as a pseudogene due to the stop codon occurring in the coding region. The pseudogenes, commonly occurring in gliadins family, are attributed to the single base change C→T. The amino acid sequences deduced from these gene sequences were characterized with the typical structure of α-gliadin proteins, including the toxic sequences (PSQQQP). The peptide fraction PF(Y)PP(Q)is thought to be an extra unit of repetitive domain, slightly diverging from the previous report. Six cysteine residues were observed within two unique domains. Phylogenetic analysis showed Gli2_Du2 and Gli2_Du3 were closely related to the genes on chromosome 6A, whereas Gli2_Dul seems to be more homologous with the genes on chromosome 6B.
基金supported by the National Technology R&D Program of China (2013BAD07B07, 2015BAD26B01 and 2018YFD0300701)
文摘Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen application rates on wheat(Triticum aestivum L.) rhizosphere soil microorganisms and enzyme activities, and their temporal variations in relation to soil fertility under supplemental irrigation conditions in a fluvo-aquic region. For this, we established a split-plot experiment for two consecutive years(2014–2015 and 2015–2016) in the field with three levels of soil moisture: water deficit to no irrigation(W1), medium irrigation to(70±5)% of soil relative moisture after jointing stage(W2), and adequate irrigation to(80±5)% of soil relative moisture after jointing stage(W3);and three levels of nitrogen: 0 kg ha^–1(N1), 195 kg ha^–1(N2) and 270 kg ha^–1(N3). Results showed that irrigation and nitrogen application significantly increased rhizosphere microorganisms and enzyme activities. Soil microbiological properties showed different trends in response to N level;the highest values of bacteria, protease, catalase and phosphatase appeared in N2, while the highest levels of actinobacteria, fungi and urease were observed in N3. In addition, these items performed best under medium irrigation(W2) relative to W1 and W3;particularly the maximum microorganism(bacteria, actinobacteria and fungi) amounts appeared at W2, 5.37×10^7 and 6.35×10^7 CFUs g^–1 higher than those at W3 in 2014–2015 and 2015–2016, respectively;and these changes were similar in both growing seasons. Microbe-related parameters fluctuated over time but their seasonality did not hamper the irrigation and fertilization-induced effects. Further, the highest grain yields of 13 309.2 and 12 885.7 kg ha^–1 were both obtained at W2 N2 in 2014–2015 and 2015–2016, respectively. The selected properties, soil microorganisms and enzymes, were significantly correlated with wheat yield and proved to be valuable indicators of soil quality. These results clearly demonstrated that the combined treatment(W2 N2) significantly improved soil microbiological properties, soil fertility and wheat yield on the Huanghuai Plain, China.
基金supported by the National Natural Science Foundation of China (31371618)the Research Plan of Application Base of Hebei, China (17962901D)
文摘Through regulating target genes via the mechanisms of posttranscriptional cleavage or translational repression, plant miRNAs involve diverse biological processes associating with plant growth, development, and abiotic stress responses, in this study, we functionally characterized TaMIR1119, a miRNA family member of wheat (Triticum aestivum), in regulating the drought adaptive response of plants. TaMIR1119 putatively targets six genes categorized into the functional classes of transcriptional regulation, RNA and biochemical metabolism, trafficking, and oxidative stress defense. Upon simulated drought stress, the TaMIR1119 transcripts abundance in roots was drastically altered, showing to be upregulated gradually within a 48-h drought regime andthat the drought-induced transcripts were gradually restored along with a 48-h recovery treatment. In contrast, most miRNA target genes displayed reverse expression patterns to TaMIR1119, exhibiting a downregulated expression pattern upon drought and whose reduced transcripts were re-elevated along with a normal recovery treatment. These expression analysis results indicated that TaMIR1119 responds to drought and regulates the target genes mainly through a cleavage mechanism. Under drought stress, the tobacco lines with TaMIR1119 overexpression behaved improved phenotypes,, showing increased plant biomass, photosynthetic parameters, osmolyte accumulation, and enhanced antioxidant enzyme (AE) activities relative to wild type. Three AE genes, NtFeSOD, NtCAT1;3, and NtSOD2,1, encoding superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) proteins, respectively, showed upregulated expression in TaMIR1119 overexpression lines, suggesting that they are involved in the regulation of AE activities and contribution to the improved cellular reactive oxygen species (ROS) homeostasis in drought-challenged transgenic lines. Our results indicate that TaMIR1119 plays critical roles in regulating plant drought tolerance through transcriptionally regulating the target genes that modulate osmolyte accumulation, photosynthetic function, and improve cellular ROS homeostasis of plants.
基金financially supported by a grant from Tarbiat Modares University,Tehran,Iran
文摘The relationship between vernalization requirement and quantitative and qualitative changes in total leaf soluble proteins were determined in one spring (cv. Kohdasht) and two winter (cvs. Sardari and Norstar) cultivars of wheat (Triticum aestivum L.) exposed to 4℃. Plants were sampled on days 2, 14, 21 and 35 of exposure to 4℃. The final leaf number (FLN) was determined throughout the vernalization periods (0, 7, 14, 24, and 35 d) at 4℃. The final leaf number decreased until days 24 and 35 in Sardari and Norstar eultivars, respectively, indicating the vernalization saturation at these times. No clear changes were detected in the final leaf number of Kohdash cultivar, verifying no vernalization requirement for this spring wheat cultivar. Comparing with control, clear cold-induced 2-fold increases in proteins quantity occurred after 48 h following the 4℃-treatment in the leaves of the both winter wheat cultivars but, such response was not detected in the spring cultivar. However, the electrophoretic protein patterns showed between-cultivar and between-temperature treatment differences. With increasing exposure time to 4℃, the winter cultivars tended to produce more HMW polypeptides than the spring cultivar. Similar proteins were induced in both Sardari and Norstar winter wheat cultivars, however, the long vernalization requirement in Norstar resulted in high level and longer duration of expression of cold-induced proteins compared to Sardari with a short vernalization requirement. These observations indicate that vernalization response regulates the expression of low temperature (LT) tolerance proteins and determines the duration of expression of LT- induced proteins.
文摘Allelic variation in two domestic wheat landraces, Pingyaobaimai and Mazhamai, two cornerstone breeding materials and their derived cultivars with drought tolerance was detected by SSR (simple sequence repeat) markers. The clustering of 25 accessions showed that the similarity between Pingyaobaimai and Yandal817, the latter was developed from the former, was 0.71, the highest one of all accessions, but the similarities were very low between these two accessions and other accessions including their derived cultivars. A similar situation was revealed between Mazhamai and its derived cultivars. Pingyaobaimai and its three derived cultivars shared three alleles at loci Xgwm526, Xgwm538 and Xgwm126 on chromosome arms 2BL, 4BL and 5AL, respectively. There were six shared alleles in Mazhamai and its derived cultivars, in order of Xgwm157, Xgwm126, Xgwm212, Xgwm626, Xgwm471 and Xgwm44 on chromosome arms 2DL, 5AL, 5DL, 6BL, 7AS and 7DC, respectively. Only one shared allele was detected between the pedigrees of Pingyaobaimai and Mazhamai. The difference of shared alleles in two cornerstone breeding materials and their derived cultivars revealed the diversity in Chinese wheat germplasm with drought tolerance and the complication in genetic basis of drought tolerance in wheat.
基金supported by the Chinese National Programs of Science and Technology for High Yielding Crop Production (2011BAD16B08, 2012BAD04B06, and 2013BAD07B05)the Key Laboratory of Crop Growth Regulation of Hebei Province, China
文摘In this study, 14 wheat cultivars with contrasting yield and N use efficiency (NUE) were used to investigate the agronomic and NUE-related traits, and the N assimilation-associated enzyme activities under low and high N conditions. Under deficient-N, the cultivars with high N uptake efficiency (UpE) and high N utilization efficiency (UtE) exhibited higher plant biomass, yields, and N contents than those with medium and low NUEs. The high UpE cultivars accumulated more N than other NUE type cultivars. Under sufficient-N, the tested cultivars showed similar patterns in biomass, yield, and N content to those under deficient-N, but the varietal variations in above traits were smaller. In addition, the high UpE cultivars displayed much more of root biomass and larger of root length, surface area, and volume than other NUE type cultivars, indicating that the root morphological traits under N deprivation are closely associated with the plant biomass through its improvement of the N acquisition. The high UtE cultivars showed higher activities of nitrate reductase (NR), nitrite reductase (NIR), and gluta- mine synthetase (GS) at stages of seediling, heading and filling than other NUE type cultivars under both low and high N conditions. Moreover, the high UpE and UtE cultivars also displayed higher photosynthetic rate under deficient-N than the medium and low NUE cultivars. Together, our results indicated that the tested wheat cultivars possess dramatically genetic variations in biomass, yield, and NUE. The root morphological traits and the N assimilation enzymatic acitivities play critical roles in regulating N accumulation and internal N translocation under the N-starvation stress, respectively. They can be used as morphological and biochemical references for evaluation of UpE and UtE in wheat.
基金a part of the regional durum wheat research project of the Dryland Agricultural Research Institute(DARI)of Iran and was supported by the Agricultural ResearchEducation and Extension Organization(AREEO)(0-15-15-89102)
文摘Clustering genotype × environment(GE) interactions and understanding the causes of GE interactions are among the most important tasks in crop breeding programs. Pattern analysis(cluster and ordination techniques) was applied to analyze GE interactions for grain yield of 24 durum wheat(Triticum turgidum L. var. durum) genotypes(breeding lines and old and new cultivars) along with a popular bread wheat(Triticum aestivum) cultivar grown in 21 different rainfed environments during the 2010–2013 cropping seasons. To investigate the causes of GE interaction, several genotypic and environmental covariables were used. In a combined ANOVA, environment was the predominant source of variation,accounting for 81.2% of the total sum of squares(TSS), and the remaining TSS due to the GE interaction effect was almost seven times that of the genetic effect. Cluster analysis separated the environments into four groups with similar discriminating ability among genotypes, and genotypes into five groups with similar patterns in yield performance.Pattern analysis confirmed two major environmental clusters(cold and warm), and allowed the discrimination and characterization of genotype adaptation. Within the cold-environment cluster, several subclusters were identified. The breeding lines were most adapted to moderate and warm environments, whereas the old varieties were adapted to cold environments. The results indicated that winter rainfall and plant height were among the environmental and genotypic covariables, respectively, that contributed most to GE interaction for grain yield in rainfed durum wheat.
基金supported by the National Basic Research Program of China(2010CB951500)
文摘Heading date was an important trait that decided the adaptation of wheat to environments. It was modiifed by genes involved in vernalization response, photoperiod response and development rate. In this study, four loci Xgwm261, Xgwm219, Xbarc23 and Ppd-D1 which were previously reported related to heading time were analyzed based on three groups of wheat including landraces (L), varieties bred before 1983 (B82) and after 1983 (A83) collected from Chinese wheat growing areas. Generally, heading date of landrace was longer than that of varieties. Signiifcant differences in the heading time existed within the groups, which implied that diversiifcation selection was much helpful for adaptation in each wheat zone. Photoperiod insensitive allele Ppd-D1a was the ifrst choice for both landrace and modern varieties, which promoted the heading date about four days earlier than that of sensitive allele Ppd-D1b. The three SSR loci had different characters in the three groups. Predominant allele combination for each zone was predicted for wheat group L and A83, which made great contribution to advantageous traits. Xgwm219 was found to be signiifcantly associated with heading date in Yellow and Huai River Winter Wheat Zone (Zone II) and spike length in Middle and lower Yangtze Valley Winter Wheat Zone (Zone III), which implied functional diversiifcation for adaption. Variation for earliness genes provided here will be helpful for whet breeding in future climatic change.