The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing...The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing high levels of FHB resistance were grown before the 1950 s. Later, pyramiding multiple sources of FHB resistance from introduced germplasm such as Mentana and Funo and locally adapted cultivars played a key role in combining satisfactory FHB resistance and high yield potential in commercial cultivars.Sumai 3, a Chinese spring wheat cultivar, became a major source of FHB resistance in the USA and Canada, and contributed to the release of more than 20 modern cultivars used for wheat production, including the leading hard spring wheat cultivars Alsen, Glenn, Barlow and SY Ingmar from North Dakota, Faller and Prosper from Minnesota, and AAC Brandon from Canada. Brazilian wheat cultivar Frontana, T. dicoccoides and other local germplasm provided additional sources of resistance. The FHB resistant cultivars mostly relied on stepwise accumulation of favorable alleles of both genes for FHB resistance and high yield,with marker-assisted selection being a valuable complement to phenotypic selection. With the Chinese Spring reference genome decoded and resistance gene Fhb1 now cloned, new genomic tools such as genomic selection and gene editing will be available to breeders, thus opening new possibilities for development of FHB resistant cultivars.展开更多
Fusarium head blight (FHB) is a worldwide disease for wheat or barley. The contamination of important agricultural products with the trichothecene mycotoxins such as deoxynivalenol (DON) or 4,15-diacetoxyscirpe-
A few EST-derived STS markers localized on Qfhs.ndsu-3BS, a major QTL for resistance to Fusarium head blight (FHB) in wheat, have been previously identified in the 'Sumai 3'/'Stoa' population. In this study, we ...A few EST-derived STS markers localized on Qfhs.ndsu-3BS, a major QTL for resistance to Fusarium head blight (FHB) in wheat, have been previously identified in the 'Sumai 3'/'Stoa' population. In this study, we used a 'Wangshuibai' (resistant)/'Seri82' (susceptible) derived population, linkage group, QTL, and quantitative gene expression analysis to assess the genetic background dependence and stability of the EST-derived STS markers for use in marker aided selection to improve FHB resistance in wheat. Based on our results, a QTL in the map interval of Xsts3B-138_1-Xgwrn493 on chromosome 3BS was detected for FHB resistance, which accounted for up to 16% of the phenotypic variation. BLASTN analysis indicated that Xsts3B-138_1 sequence had significant similarity with the resistance gene analogue. Real-time quantitative PCR showed that the relative expression of Xsts3B-138_1 in 'Wangshuibai' at 96 h after inoculation was 2.6 times higher than 'Seri82'. Our results underlined that EST-derived STS3B-138 markers could be predominantly used in marker aided selection to improve FHB resistance in wheat.展开更多
Laboratory and green house experiments were carried out to evaluate the efficacy of fungicides, biological agents and host resistance in managing FHB and the associated T-2 toxin. In vitro activity of fungicides and a...Laboratory and green house experiments were carried out to evaluate the efficacy of fungicides, biological agents and host resistance in managing FHB and the associated T-2 toxin. In vitro activity of fungicides and antagonists was determined by paired culture method. Effect of microbial agents on FHB severity and mycotoxin content was determined by co-inoculating F. graminearum and F. poae with Alternaria spp., Epicoccum spp. and Trichoderma spp. Fungicides Pearl? (500 g/L carbendazim), Cotaf? (50 g/L hexaconacole), Thiovit? (micronised sulphur 80% w/w) and Folicur? (430 g/L tebuconazole) were the standard checks. Host resistance was determined by inoculating F. poae and F. graminearum to four wheat cultivars and fifteen lines in pot ex-periments. Fungicides resulted in 100% inhibition of pathogen radial growth in in vitro while microbial agents suppressed pathogen growth by up to 53%. Thiovit? and Trichoderma were the most effective in reducing FHB severity in green house pot experiments. The wheat cultivars and lines varied in susceptibility with cultivar Njoro BW II showing least susceptibility while line R1104, cv. Mbuni and cv. KIBIS were most susceptible. All the wheat cultivars and lines accumulated T-2 toxin by up to 5 to 28 μg/kg. The results indicated that neither fungicides nor antagonists can solely be relied on in managing FHB and toxin accumulation. Therefore, integration of biocontrol agents, fungicides and further breeding efforts to improve lines and cultivars with promising resistance to FHB and T2-toxin contamina-tion is recommended.展开更多
Fusarium head blight (FHB) is a destructive disease widespread in warm humid and semi-humid areas, which not only causes yield and grain quality losses, but also produces myeatoxin deoxynivalenol, thus posing a seri...Fusarium head blight (FHB) is a destructive disease widespread in warm humid and semi-humid areas, which not only causes yield and grain quality losses, but also produces myeatoxin deoxynivalenol, thus posing a serious threat to wheat production in the world. In this study, 15 introgression lines with signifi- cantly different levels of resistance to FHB were screened as experimental materials to detect the intmgressed fragments by SSR markers from BC4F5 progenies of Atrd/Laizhou 953. The results showed that the number of polymorphic markers detected on each chromosome varied greatly, and polymorphic markers detected on chromosomes 5D and 5A were more than on other chromosomes. Am3 fragment could be detected in 15 introgression lines with 38 pairs of primers; the number of detected introgressed fragments varied among different introgression lines. Among 21 linkage groups, no introgressed fragments were detected on chromosomes 1A, 6D and 7A; the largest number of intregressed fragments was detected on chromosomes 3D and 5B. In 15 intregression lines, three QTLs for plant height, spike length and disease index detected. Qdi-caas-5A, which was derived from Am3, might be related with Type III resistance.展开更多
Survey covering 120 wheat fields was conducted in three wheat-growing districts of Kenya during the 2008 cropping season to determine the incidence of Fusarium head blight (FHB) and T2-toxin contamination in grain. FH...Survey covering 120 wheat fields was conducted in three wheat-growing districts of Kenya during the 2008 cropping season to determine the incidence of Fusarium head blight (FHB) and T2-toxin contamination in grain. FHB incidence was determined as the number of blighted ears per 10m2. Information gathered included wheat production practices, rainfall and temperature data. Fungal pathogens were isolated from wheat stems, heads, straw, grains and soil and identified based on cultural and morphological characteristics. Wheat grain samples were analyzed for T2-toxin by competitive Enzyme Linked Immunosorbent Assay (ELISA). High FHB incidences of up to 88% were recorded. Fungal genera isolated included Fusarium, Epicoccum, Trichoderma, Alternaria and Penicilium. Wheat plant parts with high infection with Alternaria and Epicoccum had corresponding low levels of Fusarium spp. Whereas Fusarium spp. were the most common fungal pathogens in stems, heads and soil, Epicoccum was frequently isolated from straw and grains. Fusarium speciesisolated included F. poae, F. graminearum, F. stilboides, F. verticilloides, F. fusarioides, F. tricinctum and F. heterosporum with F. poae and F. graminearum accounting for approximately 40% of all Fusarium infections. T-2 toxin was detected in all the grain samples and varied from 3 to 22 ppb. The study showed that FHB and T2-toxin are prevalent in the study districts and the high diversity of Fusarium species implies a challenge in FHB management as well as a risk of chronic T2-toxin exposure to humans and livestock.展开更多
With the changes of climate and cultivation systems, the Fusarium head blight(FHB) epidemic area in China has extended since 2000 from the reaches of the Yangtze River to the north and west winter wheat region.Breedin...With the changes of climate and cultivation systems, the Fusarium head blight(FHB) epidemic area in China has extended since 2000 from the reaches of the Yangtze River to the north and west winter wheat region.Breeding for FHB resistance in wheat is an effective way to control the disease.Chinese wheat breeders commenced research on FHB in the 1950 s.Sumai 3, Ning 7840,Yangmai 158, Ningmai 9 and other cultivars with improved FHB resistance were developed through standard breeding methods and widely applied in production or breeding programs.In addition to intervarietal crosses,alien germplasm was used to improve FHB resistance of wheat.Addition, substitution and translocation lines with alien chromosomes or chromosome fragments were created to enhance FHB resistance.Somaclonal variation was also used to develop a FHB resistant cv.Shengxuan 3 and other cultivars with moderate resistance to FHB were released by such methods.QTL(quantitative trait loci) for FHB resistance were characterized in cultivars originating from China.The major QTL, Fhb1, was identified on chromosome 3 BS in Sumai 3, Ning 894037, Wangshuibai and other Chinese resistant sources.Diagnostic molecular markers for Fhb1 have been applied in wheat breeding and breeding lines with improved FHB resistance and desirable agronomic traits have been obtained.However, breeding for FHB resistance is a long-term task, new technologies are likely to increase the efficiency of this process and better FHB resistance of new cultivars is expected to be achieved within the next decade.展开更多
基金financially supported by the National Key Research and Development Program of China (2017YFD0101000)International Scientific and Technological Cooperation Project (2016YFE0108600)Agricultural Science and Technology Innovation Program of CAAS
文摘The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing high levels of FHB resistance were grown before the 1950 s. Later, pyramiding multiple sources of FHB resistance from introduced germplasm such as Mentana and Funo and locally adapted cultivars played a key role in combining satisfactory FHB resistance and high yield potential in commercial cultivars.Sumai 3, a Chinese spring wheat cultivar, became a major source of FHB resistance in the USA and Canada, and contributed to the release of more than 20 modern cultivars used for wheat production, including the leading hard spring wheat cultivars Alsen, Glenn, Barlow and SY Ingmar from North Dakota, Faller and Prosper from Minnesota, and AAC Brandon from Canada. Brazilian wheat cultivar Frontana, T. dicoccoides and other local germplasm provided additional sources of resistance. The FHB resistant cultivars mostly relied on stepwise accumulation of favorable alleles of both genes for FHB resistance and high yield,with marker-assisted selection being a valuable complement to phenotypic selection. With the Chinese Spring reference genome decoded and resistance gene Fhb1 now cloned, new genomic tools such as genomic selection and gene editing will be available to breeders, thus opening new possibilities for development of FHB resistant cultivars.
文摘Fusarium head blight (FHB) is a worldwide disease for wheat or barley. The contamination of important agricultural products with the trichothecene mycotoxins such as deoxynivalenol (DON) or 4,15-diacetoxyscirpe-
基金Agricultural Biotechnology Research Institute of Iran (Iranian Ministry of Ji-had-e-Agriculture)
文摘A few EST-derived STS markers localized on Qfhs.ndsu-3BS, a major QTL for resistance to Fusarium head blight (FHB) in wheat, have been previously identified in the 'Sumai 3'/'Stoa' population. In this study, we used a 'Wangshuibai' (resistant)/'Seri82' (susceptible) derived population, linkage group, QTL, and quantitative gene expression analysis to assess the genetic background dependence and stability of the EST-derived STS markers for use in marker aided selection to improve FHB resistance in wheat. Based on our results, a QTL in the map interval of Xsts3B-138_1-Xgwrn493 on chromosome 3BS was detected for FHB resistance, which accounted for up to 16% of the phenotypic variation. BLASTN analysis indicated that Xsts3B-138_1 sequence had significant similarity with the resistance gene analogue. Real-time quantitative PCR showed that the relative expression of Xsts3B-138_1 in 'Wangshuibai' at 96 h after inoculation was 2.6 times higher than 'Seri82'. Our results underlined that EST-derived STS3B-138 markers could be predominantly used in marker aided selection to improve FHB resistance in wheat.
文摘Laboratory and green house experiments were carried out to evaluate the efficacy of fungicides, biological agents and host resistance in managing FHB and the associated T-2 toxin. In vitro activity of fungicides and antagonists was determined by paired culture method. Effect of microbial agents on FHB severity and mycotoxin content was determined by co-inoculating F. graminearum and F. poae with Alternaria spp., Epicoccum spp. and Trichoderma spp. Fungicides Pearl? (500 g/L carbendazim), Cotaf? (50 g/L hexaconacole), Thiovit? (micronised sulphur 80% w/w) and Folicur? (430 g/L tebuconazole) were the standard checks. Host resistance was determined by inoculating F. poae and F. graminearum to four wheat cultivars and fifteen lines in pot ex-periments. Fungicides resulted in 100% inhibition of pathogen radial growth in in vitro while microbial agents suppressed pathogen growth by up to 53%. Thiovit? and Trichoderma were the most effective in reducing FHB severity in green house pot experiments. The wheat cultivars and lines varied in susceptibility with cultivar Njoro BW II showing least susceptibility while line R1104, cv. Mbuni and cv. KIBIS were most susceptible. All the wheat cultivars and lines accumulated T-2 toxin by up to 5 to 28 μg/kg. The results indicated that neither fungicides nor antagonists can solely be relied on in managing FHB and toxin accumulation. Therefore, integration of biocontrol agents, fungicides and further breeding efforts to improve lines and cultivars with promising resistance to FHB and T2-toxin contamina-tion is recommended.
基金Supported by Crop Science Advantage Discipline of Jiangsu Province
文摘Fusarium head blight (FHB) is a destructive disease widespread in warm humid and semi-humid areas, which not only causes yield and grain quality losses, but also produces myeatoxin deoxynivalenol, thus posing a serious threat to wheat production in the world. In this study, 15 introgression lines with signifi- cantly different levels of resistance to FHB were screened as experimental materials to detect the intmgressed fragments by SSR markers from BC4F5 progenies of Atrd/Laizhou 953. The results showed that the number of polymorphic markers detected on each chromosome varied greatly, and polymorphic markers detected on chromosomes 5D and 5A were more than on other chromosomes. Am3 fragment could be detected in 15 introgression lines with 38 pairs of primers; the number of detected introgressed fragments varied among different introgression lines. Among 21 linkage groups, no introgressed fragments were detected on chromosomes 1A, 6D and 7A; the largest number of intregressed fragments was detected on chromosomes 3D and 5B. In 15 intregression lines, three QTLs for plant height, spike length and disease index detected. Qdi-caas-5A, which was derived from Am3, might be related with Type III resistance.
文摘Survey covering 120 wheat fields was conducted in three wheat-growing districts of Kenya during the 2008 cropping season to determine the incidence of Fusarium head blight (FHB) and T2-toxin contamination in grain. FHB incidence was determined as the number of blighted ears per 10m2. Information gathered included wheat production practices, rainfall and temperature data. Fungal pathogens were isolated from wheat stems, heads, straw, grains and soil and identified based on cultural and morphological characteristics. Wheat grain samples were analyzed for T2-toxin by competitive Enzyme Linked Immunosorbent Assay (ELISA). High FHB incidences of up to 88% were recorded. Fungal genera isolated included Fusarium, Epicoccum, Trichoderma, Alternaria and Penicilium. Wheat plant parts with high infection with Alternaria and Epicoccum had corresponding low levels of Fusarium spp. Whereas Fusarium spp. were the most common fungal pathogens in stems, heads and soil, Epicoccum was frequently isolated from straw and grains. Fusarium speciesisolated included F. poae, F. graminearum, F. stilboides, F. verticilloides, F. fusarioides, F. tricinctum and F. heterosporum with F. poae and F. graminearum accounting for approximately 40% of all Fusarium infections. T-2 toxin was detected in all the grain samples and varied from 3 to 22 ppb. The study showed that FHB and T2-toxin are prevalent in the study districts and the high diversity of Fusarium species implies a challenge in FHB management as well as a risk of chronic T2-toxin exposure to humans and livestock.
基金funded by the National Key Project for the Research and Development of China (2017YFD0100806)the China Agricultural Research System Program (CARS-03)
文摘With the changes of climate and cultivation systems, the Fusarium head blight(FHB) epidemic area in China has extended since 2000 from the reaches of the Yangtze River to the north and west winter wheat region.Breeding for FHB resistance in wheat is an effective way to control the disease.Chinese wheat breeders commenced research on FHB in the 1950 s.Sumai 3, Ning 7840,Yangmai 158, Ningmai 9 and other cultivars with improved FHB resistance were developed through standard breeding methods and widely applied in production or breeding programs.In addition to intervarietal crosses,alien germplasm was used to improve FHB resistance of wheat.Addition, substitution and translocation lines with alien chromosomes or chromosome fragments were created to enhance FHB resistance.Somaclonal variation was also used to develop a FHB resistant cv.Shengxuan 3 and other cultivars with moderate resistance to FHB were released by such methods.QTL(quantitative trait loci) for FHB resistance were characterized in cultivars originating from China.The major QTL, Fhb1, was identified on chromosome 3 BS in Sumai 3, Ning 894037, Wangshuibai and other Chinese resistant sources.Diagnostic molecular markers for Fhb1 have been applied in wheat breeding and breeding lines with improved FHB resistance and desirable agronomic traits have been obtained.However, breeding for FHB resistance is a long-term task, new technologies are likely to increase the efficiency of this process and better FHB resistance of new cultivars is expected to be achieved within the next decade.