Bread wheat(Triticum aestivum)is a staple food crop worldwide.The genetic dissection of important nutrient traits is essential for the biofortification of wheat to meet the nutritional needs of the world's growing...Bread wheat(Triticum aestivum)is a staple food crop worldwide.The genetic dissection of important nutrient traits is essential for the biofortification of wheat to meet the nutritional needs of the world's growing population.Here,45,298 single-nucleotide polymorphisms(SNPs)from 55K chip arrays were used to genotype a panel of 768 wheat cultivars,and a total of 154 quantitative trait loci(QTLs)were detected for eight traits under three environments by genome-wide association study(GWAS).Three QTLs(qMn-3B.1,qFe-3B.4,and qSe-3B.1/qFe-3B.6)detected repeatedly under different environments or traits were subjected to subsequent analyses based on linkage disequilibrium decay and the P-values of significant SNPs.Significant SNPs in the three QTL regions formed six haplotypes for qMn-3B.1,three haplotypes for qFe-3B.4,and three haplotypes for qSe-3B.1/qFe-3B.6.Phenotypic analysis revealed significant differences among haplotypes.These results indicated that the concentrations of several nutrient elements have been modified during the domestication of landraces to modern wheat.Based on the QTL regions,we identified 15 high-confidence genes,eight of which were stably expressed in different tissues and/or developmental stages.TraesCS3B02G046100 in qMn-3B.1 and TraesCS3B02G199500 in qSe-3B.1/qFe-3B.6 were both inferred to interact with metal ions according to the Gene Ontology(GO)analysis.TraesCS3B02G199000,which belongs to qSe-3B.1/qFe-3B.6,was determined to be a member of the WRKY gene family.Overall,this study provides several reliable QTLs that may significantly affect the concentrations of nutrient elements in wheat grain,and this information will facilitate the breeding of wheat cultivars with improved grain properties.展开更多
Objective:Seawater leakage in Al-Jabal Al-Akhdar East Libya's coastal areas is one of the most biggest obstacles to farmers obtaining a highly productive crop.As a result,the experiment was conducted in a laborato...Objective:Seawater leakage in Al-Jabal Al-Akhdar East Libya's coastal areas is one of the most biggest obstacles to farmers obtaining a highly productive crop.As a result,the experiment was conducted in a laboratory to find out the impact of irrigation with seawater on the salt tolerance of Acsad Bread wheat genotypes.Method:Ten genotypes(1398,1492,1514,1522,1524,1536,1538,1544,1550,and 1562),obtained from the Arab Center for the Studies of Arid Zones and Dry Lands Acsad,were used in the study,10 seeds of each genotype with three repetitions were germinated under four seawater concentrations(10,20,30 and 40%).Results:The results showed that there were highly significant(P≤0.05)differences in the genotypes’response to all salinity concentrations,Which led to decreasing germination percentage,delaying the average germination time,and decreasing radical/plumule length and seedling fresh/dry weight compared with a control.As noted genotypes(1524,1522 and 1514)were able to germinate in all concentrations of seawater,and gave the best average for all the studied traits.Also,the study indicated that a concentration of seawater of 40%was the most toxic for all wheat genotypes.The results of this study categorize the wheat genotypes into tolerant genotypes(1524,1522 and 1514),moderate tolerant(1492,1536),and sensitive(1398,1538,1544,1550 and 1562).Conclusion:The results concluded that the possibility of wheat crops agriculture into tolerant in Libyan coastal locations in which seawater concentration did not exceed 30%.展开更多
Steamed bread is very popular in the East and Southeast Asian regions, and its quality is affected by some physicochemical properties. Chinese steamed bread was made by adding waxy flour into normal wheat flour in the...Steamed bread is very popular in the East and Southeast Asian regions, and its quality is affected by some physicochemical properties. Chinese steamed bread was made by adding waxy flour into normal wheat flour in the present study. The results showed that specific volume was not affected by the proportions of waxy flour, whereas, adding waxy flour decreased the appearance, color, texture, elasticity, stickiness, and the total score of Chinese steamed bread. However, there were no significant differences in all values when the proportions of waxy flour were below 10%. All evaluations but specific volume of Chinese steamed bread were positively influenced by the peak viscosity, resistance, and maximum resistance. When the waxy flour proportions were below 25%, the firmness of Chinese steamed bread stored at -18℃ for 3 days gradually decreased with the increase of waxy flour. It was revealed that the qualities of Chinese steamed bread cannot be improved by waxy flour but it can be widely used in frozen storing food in the future.展开更多
Translocation of previously accumulated nitrogen and carbohydrates from vegetative tissue of the wheat plant is a major assimilate source for grain filling. This study was conducted to examine genotype differences in ...Translocation of previously accumulated nitrogen and carbohydrates from vegetative tissue of the wheat plant is a major assimilate source for grain filling. This study was conducted to examine genotype differences in nitrogen and fructan translocation and their relationships to grain yield and protein content. Effects indicated that significant genotype differences existed for nitrogen accumulation at anthesis and fructan at milk stage and their translocation. Two high protein genotypes, Cunningham and PST90-19, accumulated more nitrogen before anthesis and had greater nitrogen translocation, but lower post-anthesis nitrogen uptake, than two low protein genotypes, SUN109A and TM56. Among plant parts, leaves were the major storage for tissue nitrogen and provided the overwhelming proportion of the total nitrogen translocation, whereas for fructan accumulation and translocation it was the stems. The two high protein genotypes had a higher percentage of their grain nitrogen derived from nitrogen translocation, while for the two low protein ones, it was from post-anthesis nitrogen uptake and assimilation. Increasing nitrogen application increased nitrogen accumulation and translocation, but decreased fructan accumulation and translocation. High grain protein content was associated with high nitrogen translocation from leaves, stems and the total plant, while high grain yield was related to high fructan translocation from stems and the total plant. Fructan translocation was negatively correlated to grain protein content. Nitrogen and fructan translocation were not correlated with each other.展开更多
Aluminum (Al) toxicity often takes place in acidic soils with a pH of 5.5 or lower. Breeding and cultivation of Al tolerance wheat can partially protect wheat escaping from Al toxicity. The scarcity of the tolerant ...Aluminum (Al) toxicity often takes place in acidic soils with a pH of 5.5 or lower. Breeding and cultivation of Al tolerance wheat can partially protect wheat escaping from Al toxicity. The scarcity of the tolerant sources impedes the wheat breeding. In order to find new Al tolerance sources, we screened 173 bread wheat landraces from Tibet of China using hydroponic screening. It was indicated that: (1) There were diversities on the root regenerate length (RRL). The RRL of a large of landraces were longer than 7.00 cm in pH 7 (58.38%) and pH 4.5 (66.47%), but shorter than 5.00 cm in pH 4.5 +50μM Al^3+ (80.93%). The low pH showed either promotion or restraining effects depend on landraces, but Al toxicity under low pH only showed restraining effects on the root elongation. (2) There were also diversities on root tolerance index of low pH (RTI 1) or root aluminum tolerance index (RTI2) among cultivars. The RTI1 varied from a narrow range but with relatively high value (0.8722-1.2953) in comparison with that of RTI2 (0.3829-1.0058), and the RTI1 of approximately 60% landraces was higher than 1.0000, the RTI2 of only 19.07% landraces was higher than 0.7000, suggesting that Al toxicity acted as an important factor for the reduction of the root elongation under acidic soils. (3) The RTI 1 of many wheats was higher than 1.0000, and As2256 and As2295 were the most tolerant for low pH, with RTI1 1.2953 and 1.2925, respectively. (4) Based on RTI2, seven wheats showed similar or higher tolerance to Al toxicity than Chinese Spring (CS), a known tolerance wheat. Much better tolerance existed in landraces of As1543 and As1242, which can be used as the new parents for Al tolerant breeding.展开更多
The purpose of this study is to identify major factors affecting the manufacture and quality of steamed bread,consumed in Southeast Asia including China,Japan,and Korea.Hence,flours of 11 Korean wheat cultivars were u...The purpose of this study is to identify major factors affecting the manufacture and quality of steamed bread,consumed in Southeast Asia including China,Japan,and Korea.Hence,flours of 11 Korean wheat cultivars were used to evaluate quality attributes of two different styles of steamed bread,Korean style steamed bread(KSSB)and northern-style Chinese steamed bread(NSCSB).KSSB prepared more ingredients and higher optimum water absorption of dough than NSCSB because Korean consumers prefer white and glossy surface and soft crumb.KSSB showed lower height,larger diameter and volume of steamed bread,higher stress relaxation,and softer texture of crumb than NSCSB.The correlation between flour characteristics and quality of steamed bread was different in KSSB and NSCSB.About 90%of variability in the height and volume of KSSB could be predicted from protein content,mixing tolerance of Mixograph,average particle size of flour,final viscosity and solvent retention capacity.Protein content and quality parameters also could explain the variation of steamed bread height in NSCSB.Korean wheat carrying Glu-A3c allele produced higher volume of steamed bread(704.7 mL)than Glu-A3d allele(645.8 mL)in KSSB,although there was no significant difference in volume of NSCSB by glutenin compositions.Glu-D1d and Glu-A3c alleles had softer texture of crumb than Glu-D1f and Glu-A3d alleles in KSSB,Glu-B3i allele also showed lower hardness of crumb than their counterpart allele in NSCSB.Hard wheat showed higher height and volume of steamed bread,and lower stress relaxation and hardness of crumb than soft wheat in KSSB.展开更多
Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia....Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.展开更多
Starch is the major component in the wheat kernel, which is mainly composed of amylose and amylopectin. The wheat without amylose in its endosperm was called "waxy wheat". Waxy wheat can be used to adjust the amylos...Starch is the major component in the wheat kernel, which is mainly composed of amylose and amylopectin. The wheat without amylose in its endosperm was called "waxy wheat". Waxy wheat can be used to adjust the amylose content and improve the wheat-based food quality by adding to non-waxy wheat flour. In order to investigate the effect of waxy wheat flour on the quality of fresh and stale bread, waxy wheat flour was added into the flour of Canadian Spring Wheat 2 at 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, and 35.0% to make breads. The physicochemical properties were adjusted to suitability by adding Yangmai 158 flour, and breads were evaluated for sensory quality, crumb firmness, loaf volume and weight loss over a period of 0, 2, 4, and 6 days. The result showed that the best total score of fresh bread was 82.9 by adding waxy flour at 7.0%, though no significant difference was found among blends with 0.0-15.0% of waxy flour. Breads with the addition of 22.0% waxy flour had lower firmness, and decreasing loss of weight. Waxy wheat flour blend at 15.0% was optimal in retarding staling without significant decreasing fresh bread quality in comparison to the control.展开更多
Starch viscosity is closely associated with noodle quality. RVA(rapid viscosity analyzer) was used to investigate the paste property of leading Chinese wheat varieties arid 38 Australian wheat lines. Results showed th...Starch viscosity is closely associated with noodle quality. RVA(rapid viscosity analyzer) was used to investigate the paste property of leading Chinese wheat varieties arid 38 Australian wheat lines. Results showed that significant variability for RVA parameters was observed among Chinese wheat varieties, particularly among spring wheat varieties. In general, Australia wheat lines performed better paste characters than that of Chinese winter wheats. Genotype (G), environment (E) and genotype by environment (G×E) interaction affected all paste traits. Correlation analysis indicated that peak viscosity correlated highly and significantly with viscosity, breakdown, setback, final viscosity, peak time, and falling number(r = 0.56-0.93, P<0.01). However breakdown was not significantly associated with most paste properties. Paste characters increased from low to high latitude both in the north and south part of Yellow and Huai Valley.展开更多
Whole wheat bread is widely available worldwide,but it is always associated with less desirable dough processibility,small loaf volume,firm and gritty texture,and other distinctive attributes compared to white bread.E...Whole wheat bread is widely available worldwide,but it is always associated with less desirable dough processibility,small loaf volume,firm and gritty texture,and other distinctive attributes compared to white bread.Emulsifiers are commonly used to improve dough handling and baking quality during bread production.In present study,five emulsifiers(diacetyl tartaric acid esters of mono-and diglycerides(DATEM),polysorbate 80,sodium stearoyl lactylate(SSL),soy lecithin,and sucrose esters)were added during dough preparation of the whole wheat flour at 0.2%,0.5%,and 1.0%(flour weight basis).Dough rheological behavior and bread quality attributes,such as specific loaf volume and hardness,were measured.The results showed that DATEM,sucrose esters,and SSL increased the resistance to extension of the dough,whereas soy lecithin and polysorbate 80 increased the extensibility.Soy lecithin and polysorbate 80 were the only emulsifiers that significantly increased loaf volume compared to the control.Adding higher levels(1.0%)of sucrose esters,polysorbate 80,and SSL increased the formation of amylose-lipid complex and mitigate the crumb staling during storage.The results suggested that the emulsifiers could be applied to contribute to optimum functional quality of whole wheat bread.展开更多
Field experiments were conducted during 2009/10 and 2010/2011 dry seasons at the Fadama Teaching and Research Farm of the Usmanu Danfodiyo University, Sokoto, in the Sudan Savanna ecological zone of Nigeria (latitude ...Field experiments were conducted during 2009/10 and 2010/2011 dry seasons at the Fadama Teaching and Research Farm of the Usmanu Danfodiyo University, Sokoto, in the Sudan Savanna ecological zone of Nigeria (latitude 13°01'N;longitude 5°15'E, altitude of 350 m above sea level) to study the effect of water stress, sowing date and cultivar on yield and yield components of wheat (Triticum aestivum L.). The treatments consisted of factorial combination of water stress at three critical growth stages which was imposed by withholding water at tillering, flowering, grain filling and control (no stress), four sowing dates (21st November, 5th December, 19th December and 2nd January) and two bread wheat cultivar (Star 11 TR 77173/SLM and Kuaz/Weaver), laid out in a split-plot design with three replications. Water stress and date of sowing were assigned to the main-plot, while variety was assigned to the sub-plots. Result revealed that water stress at tillering significantly reduced spike length and grains per spike. Whereas, water stress at flowering and grain filling significantly reduced 1000-grain weight, grain yield and harvest index. Results also indicated significant (P st November and 5th December and lowest at 19th December and 2nd January, therefore wheat should be sown in November or at least first week of December in this area and other area with similar climate. Variety had significant effect on spike per m-2, grain yield and harvest index. Water stress at flowering and grain filling should be avoided as they are the most critical growth stages in yield determination in wheat, because plants cannot recover, while delay in sowing resulted in reduction in yield and yield components. Star II TR 77173/SLM is therefore recommended for the area.展开更多
Investigation of genetic diversity of geographically distant wheat genotypes is </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">useful ...Investigation of genetic diversity of geographically distant wheat genotypes is </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">useful approach in wheat breeding providing efficient crop varieties. This article presents multivariate cluster and principal component analyses (PCA) of some yield traits of wheat, such as thousand-kernel weight (TKW), grain number, grain yield and plant height. Based on the results, an evaluation of economically valuable attributes by eigenvalues made it possible to determine the components that significantly contribute to the yield of common wheat genotypes. Twenty-five genotypes were grouped into four clusters on the basis of average linkage. The PCA showed four principal components (PC) with eigenvalues ></span><span style="font-family:""> </span><span style="font-family:Verdana;">1, explaining approximately 90.8% of the total variability. According to PC analysis, the variance in the eigenvalues was </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">greatest (4.33) for PC-1, PC-2 (1.86) and PC-3 (1.01). The cluster analysis revealed the classification of 25 accessions into four diverse groups. Averages, standard deviations and variances for clusters based on morpho-physiological traits showed that the maximum average values for grain yield (742.2), biomass (1756.7), grains square meter (18</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;">373.7), and grains per spike (45.3) were higher in cluster C compared to other clusters. Cluster D exhibited the maximum thousand-kernel weight (TKW) (46.6).展开更多
Quantitative trait loci (QTL) analysis was conducted in bread wheat for 14 important traits utilizing data from four different mapping populations involving different approaches of QTL analysis. Analysis for grain pro...Quantitative trait loci (QTL) analysis was conducted in bread wheat for 14 important traits utilizing data from four different mapping populations involving different approaches of QTL analysis. Analysis for grain protein content (GPC) sug- gested that the major part of genetic variation for this trait is due to environmental interactions. In contrast, pre-harvest sprouting tolerance (PHST) was controlled mainly by main effect QTL (M-QTL) with very little genetic variation due to environmental interactions; a major QTL for PHST was detected on chromosome arm 3AL. For grain weight, one QTL each was detected on chromosome arms 1AS, 2BS and 7AS. QTL for 4 growth related traits taken together detected by different methods ranged from 37 to 40; nine QTL that were detected by single-locus as well as two-locus analyses were all M-QTL. Similarly, single-locus and two-locus QTL analyses for seven yield and yield contributing traits in two populations respectively allowed detection of 25 and 50 QTL by composite interval mapping (CIM), 16 and 25 QTL by multiple-trait composite interval mapping (MCIM) and 38 and 37 QTL by two-locus analyses. These studies should prove useful in QTL cloning and wheat improvement through marker aided selection.展开更多
The feasibility of partially replacing wheat flour with malted rice flour in bread making was evaluated in several formulations, aiming to find a formulation for the production of malted rice-wheat bread with better n...The feasibility of partially replacing wheat flour with malted rice flour in bread making was evaluated in several formulations, aiming to find a formulation for the production of malted rice-wheat bread with better nutritional quality and consumer acceptance. The whole grains of a local rice variety (Oryza sativa L. subsp. indica var. Mottaikaruppan) were steeped in distilled water (12 h, 30°C) and germinated for 3 days to obtain high content of soluble materials and amylase activity in bread making. The quality of bread was evaluated by considering the physical and sensorial parameters. When the wheat flour was substituted with malted rice flour, 35% substitution level and the malted rice flour from 3 days of germination was the best according to the physical and sensory qualities of bread. The quality of bread was improved by the addition of 20 g of margarine, 20 g of baking powder and 20 g of yeast in 1 kg of flour. Among different ratios of yeast and baking powder, 2:1 was the best. Bread improver containing amylases and oxidizing agents at the concentration of 40 g/kg was selected as the best concentration. When comparing the final formulation made in the bakery with wheat bread, malted rice-wheat bread contains more soluble dietary fiber (0.62%), insoluble dietary fiber (3.95%), total dietary fiber (4.57%) and free amino acid content (0.64 g/kg) than those in wheat bread (0.5%, 2.73%, 3.23% and 0.36 g/kg, respectively).展开更多
Many edible legumes contain high amounts of proteins, fibers, minerals and vitamins. Their essential amino acid composition and concentration complements the amino acids in wheat and other cereals. In addition, breads...Many edible legumes contain high amounts of proteins, fibers, minerals and vitamins. Their essential amino acid composition and concentration complements the amino acids in wheat and other cereals. In addition, breads fortified with protein rich legumes make the breads more palatable. In this study, we evaluated breads made from wheat flour partially substituted with soybean, navy bean, and lupin flours at 10%, 20%, and 30% levels. The physicochemical properties of breads were measured and compared with the control (made from 100% wheat flour). Statistical analysis was used to assess the significance of the differences. The breads fortified with soybean, lupin and navy bean flours showed remarkable springiness, similar to the breads made from wheat flour. However, the higher amount of substitution increased the firmness of the breads, probably due to the incorporation of additional fibers and proteins into the formulations. Compared to wheat bread, the volumes of 90:10 wheat-soybean, wheat-lupin, and wheat-navy bean breads decreased about 7%, 2%, and 10%, respectively. Higher substitution levels would result in a higher reduction in volume for all legumes tested. The volume reduction as a result of legume substitution appears to be navy bean flour > soybean flour > lupin flour. The inclusion of legumes in the bread formulations imparts a slightly darker crust color and crumb color with the exception of breads with the soybean flour substitution. Lupin appears to be the best substitution candidate among the legumes tested for fortified bread making. Lupin can be presented as a high-value protein source in developing marketable foods for health conscious consumers.展开更多
Bread wheat (Triticum aestivum L.) is most important cereal crop in Ethiopia. Lack of genotypes with wide stability across environments has been one of the most important constraints of wheat production in the country...Bread wheat (Triticum aestivum L.) is most important cereal crop in Ethiopia. Lack of genotypes with wide stability across environments has been one of the most important constraints of wheat production in the country. Field experiments were conducted in Halaba and Bule, South Ethiopia, in 2016 and 2017, in order to estimate grain yield stability and association among stability parameters. Fifteen improved bread wheat genotypes were grown under randomized complete block design with three replications. Mean yield for Halaba 2016, Halaba 2017, Bule 2016 and Bule 2017 was 3.83, 1.89, 2.90 and 3.59 tons/ha, respectively. Genotypes Lemu (3.25 tons/ha) and Mandoyu (3.18 tons/ha) had high mean yield, and low values of environmental variance (S2i), coefficient of variation (CVi), stability variance (δ2i), ecovalence (Wi) and deviation from regression (S2di). Genotypes Biqa (3.69 tons/ha) and Shorima (3.66 tons/ha) had high mean yield, coefficient of regression (bi) and coefficient of determination (R2i ≥ 0.94) as well as low values of δ2i, Wi and S2di. Grain yield had positive rank correlation with bi (r = 0.75, p 2i (r = 0.70, p δ2i, Wi and S2di was high (r ≥ 0.98, p , Mandoyu and Hidase, and Biqa and Shorima would be recommended for wide adaption, and for more favorable environments, respectively. It could also be suggested that one of Wi, δ2i, S2di and rank sum would be used for ranking of genotypes.展开更多
Population varieties can meet the needs of organic farming as they are composed of diverse genotypes and have nutritional and sensory characteristics of interest. Their intra-specific genetic variability helps to adap...Population varieties can meet the needs of organic farming as they are composed of diverse genotypes and have nutritional and sensory characteristics of interest. Their intra-specific genetic variability helps to adapt to the diversity of soil and climate conditions, management practices and needs. Moreover, an integrated organic bread sector has emerged willing to use more wheat populations. To explore sensory and nutritional potential of bread wheat populations, hedonic tests, sensory profile and nutritional analyses were implemented on eight wheat population varieties and one modern variety. Hedonic tests revealed consensus among consumer when ranking according to specific sensory characteristics and showed preferences for red wheat breads. Descriptive sensory test showed significant differences between genotypes on 6 out of 11 descriptors and confirmed the sensory specificity of red wheat accessions. Nutritional analyses showed differences especially on minerals content. Sensory differences between breads from different genotypes can be perceived both by trained and untrained panels as suggested by results. Moreover, red accessions showed specific sensory characteristics which are well-perceived by the two panels. Breeding effort should be maintained for high diverse genotypes with improved sensory and nutritional qualities adapted to organic farming conditions. Indicators like kernel colour should be sought to help integrate such criteria.展开更多
Growing concerns for food security and the alleviation of hunger necessitate knowledge-based crop management technologies for sustainable crop production.In this study,13 winter bread wheat genotypes(old,relatively ol...Growing concerns for food security and the alleviation of hunger necessitate knowledge-based crop management technologies for sustainable crop production.In this study,13 winter bread wheat genotypes(old,relatively old,modern,and breeding lines)were evaluated under three different tillage systems,i.e.,conventional tillage(CT,full tillage with residue removed),reduced tillage(RT,chisel tillage with residue retained)and no-tillage(NT,no-tillage with residue retained on the soil surface)in farmer’s fields under rainfed conditions using strip-plot arrangements in a randomized complete block design with three replications in the west of Iran(Kamyaran and Hosseinabad locations)over two cropping seasons(2018–2019 and 2019–2020).The main objectives were to investigate the effects of tillage systems and growing conditions on the agronomic characteristics,grain yield and stability performance of rainfed winter bread wheat genotypes.Significant(P<0.01)genotype×tillage system interaction effects on grain yield and agronomic traits suggested that the genotypes responded differently to the different tillage systems.The number of grains per spike and plant height were positively(P<0.0)associated with grain yield under the NT system,so they may be considered as targeted traits for future wheat breeding.Using statistical models,the modern cultivars(“Sadra”and“Baran”)were identified as high yielding and showed yield stability across the different tillage systems.As per each tillage system,genotype“Sadra”followed by“Zargana-6//Dari 1-7 Sabalan”exhibited higher adaption to CT;while cultivars“Jam”and“Azar2”showed better performance under the RT system;and cultivars“Varan”and“Baran”tended to have better performance expression in the NT condition.The increased grain yields achieved in combination with lower costs and greater profits from conservation agriculture suggest that adapted cultivar and NT systems should be evaluated and promoted more widely to farmers in the west of Iran as an attractive package of crop management technologies.In conclusion,variations in the performance of genotypes and the significant genotype×tillage system interaction effects on grain yield and some agronomic traits assessed in this study suggest that the development and selection of cultivars adapted to the NT system should be considered and included in the strategies and objectives of winter wheat breeding programs for the temperate and cold dryland conditions of Iran.展开更多
In recent years, food authentication, in terms of geographical and varietal/animal origins, is considered of primary importance at all levels of the production process. Therefore, it is clear that there is an economic...In recent years, food authentication, in terms of geographical and varietal/animal origins, is considered of primary importance at all levels of the production process. Therefore, it is clear that there is an economic basis to develop analytical methods able to certify the declared origin of food products, in order to protect consumers and honest producers from fraud and unfair competition, respectively;consequently, during recent years, several food authentication techniques have been proposed. This review attempted to present in a critical way the contribution of High Resolution Nuclear Magnetic Resonance (HR-NMR) and Isotope Ratio Mass Spectrometry (IRMS) techniques in the assessment of quality and authenticity, mainly in terms of characterization of geographical and varietal origin, of wheat and wheat products, focusing on the most important studies to this direction.展开更多
In order to study steamed bread quality traits and explore good wheat cultivars, 25 wheat cultivars grown in Shandong province were used through one-process fermentation procedure to examine the variability of steamed...In order to study steamed bread quality traits and explore good wheat cultivars, 25 wheat cultivars grown in Shandong province were used through one-process fermentation procedure to examine the variability of steamed bread quality traits and the correlation between quality and score. The results showed that all the steamed bread quality traits expressed large variable coefficient except volume, L* value, l* value and cohesiveness traits, which suggested that the genetic diversity made from wheat in Shandong province was large. The average comprehensive score of the steamed bread was 76.8 for the tested 25 varieties, and ten varieties reached the good steamed bread level, which were Liangxing 99, Luyuan 205, Jimai 22, Jinan 17, Tainong 19, Wennong 17, Huaiyin 84137, and Huaimai 8. The main quality factors affecting the steamed bread score were volume, L* value, A* value, hardness, chewiness, and adhesiveness. Among these factors, the adhesiveness has a significantly positive correlation with the hardness and cohesive, and the volume has a significantly positive correlation with the A* value. The volume, L* value has a significantly positive correlation with score, A* value, hardness and chewiness, and gumminess has a significantly negative correlation with the score. There was no correlation between the score and other traits. The results will benefit the understanding of steamed bread quality in wheat cultivated in Shandong. l展开更多
基金This work was supported by grants from the Natural Science Foundation of Shandong Province,China(ZR2020MC096,ZR2021ZD31,and ZR2020MC151)the Agricultural Variety Improvement Project of Shandong Province,China(2021LZGC013 and 2022LZGC002).
文摘Bread wheat(Triticum aestivum)is a staple food crop worldwide.The genetic dissection of important nutrient traits is essential for the biofortification of wheat to meet the nutritional needs of the world's growing population.Here,45,298 single-nucleotide polymorphisms(SNPs)from 55K chip arrays were used to genotype a panel of 768 wheat cultivars,and a total of 154 quantitative trait loci(QTLs)were detected for eight traits under three environments by genome-wide association study(GWAS).Three QTLs(qMn-3B.1,qFe-3B.4,and qSe-3B.1/qFe-3B.6)detected repeatedly under different environments or traits were subjected to subsequent analyses based on linkage disequilibrium decay and the P-values of significant SNPs.Significant SNPs in the three QTL regions formed six haplotypes for qMn-3B.1,three haplotypes for qFe-3B.4,and three haplotypes for qSe-3B.1/qFe-3B.6.Phenotypic analysis revealed significant differences among haplotypes.These results indicated that the concentrations of several nutrient elements have been modified during the domestication of landraces to modern wheat.Based on the QTL regions,we identified 15 high-confidence genes,eight of which were stably expressed in different tissues and/or developmental stages.TraesCS3B02G046100 in qMn-3B.1 and TraesCS3B02G199500 in qSe-3B.1/qFe-3B.6 were both inferred to interact with metal ions according to the Gene Ontology(GO)analysis.TraesCS3B02G199000,which belongs to qSe-3B.1/qFe-3B.6,was determined to be a member of the WRKY gene family.Overall,this study provides several reliable QTLs that may significantly affect the concentrations of nutrient elements in wheat grain,and this information will facilitate the breeding of wheat cultivars with improved grain properties.
文摘Objective:Seawater leakage in Al-Jabal Al-Akhdar East Libya's coastal areas is one of the most biggest obstacles to farmers obtaining a highly productive crop.As a result,the experiment was conducted in a laboratory to find out the impact of irrigation with seawater on the salt tolerance of Acsad Bread wheat genotypes.Method:Ten genotypes(1398,1492,1514,1522,1524,1536,1538,1544,1550,and 1562),obtained from the Arab Center for the Studies of Arid Zones and Dry Lands Acsad,were used in the study,10 seeds of each genotype with three repetitions were germinated under four seawater concentrations(10,20,30 and 40%).Results:The results showed that there were highly significant(P≤0.05)differences in the genotypes’response to all salinity concentrations,Which led to decreasing germination percentage,delaying the average germination time,and decreasing radical/plumule length and seedling fresh/dry weight compared with a control.As noted genotypes(1524,1522 and 1514)were able to germinate in all concentrations of seawater,and gave the best average for all the studied traits.Also,the study indicated that a concentration of seawater of 40%was the most toxic for all wheat genotypes.The results of this study categorize the wheat genotypes into tolerant genotypes(1524,1522 and 1514),moderate tolerant(1492,1536),and sensitive(1398,1538,1544,1550 and 1562).Conclusion:The results concluded that the possibility of wheat crops agriculture into tolerant in Libyan coastal locations in which seawater concentration did not exceed 30%.
文摘Steamed bread is very popular in the East and Southeast Asian regions, and its quality is affected by some physicochemical properties. Chinese steamed bread was made by adding waxy flour into normal wheat flour in the present study. The results showed that specific volume was not affected by the proportions of waxy flour, whereas, adding waxy flour decreased the appearance, color, texture, elasticity, stickiness, and the total score of Chinese steamed bread. However, there were no significant differences in all values when the proportions of waxy flour were below 10%. All evaluations but specific volume of Chinese steamed bread were positively influenced by the peak viscosity, resistance, and maximum resistance. When the waxy flour proportions were below 25%, the firmness of Chinese steamed bread stored at -18℃ for 3 days gradually decreased with the increase of waxy flour. It was revealed that the qualities of Chinese steamed bread cannot be improved by waxy flour but it can be widely used in frozen storing food in the future.
文摘Translocation of previously accumulated nitrogen and carbohydrates from vegetative tissue of the wheat plant is a major assimilate source for grain filling. This study was conducted to examine genotype differences in nitrogen and fructan translocation and their relationships to grain yield and protein content. Effects indicated that significant genotype differences existed for nitrogen accumulation at anthesis and fructan at milk stage and their translocation. Two high protein genotypes, Cunningham and PST90-19, accumulated more nitrogen before anthesis and had greater nitrogen translocation, but lower post-anthesis nitrogen uptake, than two low protein genotypes, SUN109A and TM56. Among plant parts, leaves were the major storage for tissue nitrogen and provided the overwhelming proportion of the total nitrogen translocation, whereas for fructan accumulation and translocation it was the stems. The two high protein genotypes had a higher percentage of their grain nitrogen derived from nitrogen translocation, while for the two low protein ones, it was from post-anthesis nitrogen uptake and assimilation. Increasing nitrogen application increased nitrogen accumulation and translocation, but decreased fructan accumulation and translocation. High grain protein content was associated with high nitrogen translocation from leaves, stems and the total plant, while high grain yield was related to high fructan translocation from stems and the total plant. Fructan translocation was negatively correlated to grain protein content. Nitrogen and fructan translocation were not correlated with each other.
基金supported by the program for the New Century Excellent Talents in University of China (NCET-06-0819)the National Natural Science Foundation of China (30671272 & 30370882)+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China (200458)the National High Technology Research and Development Program of China (863 Program,2006AA10Z179, 2006AA10Z1F8)the Scientific Research Fund of Sichuan Provincial Education Department, China.
文摘Aluminum (Al) toxicity often takes place in acidic soils with a pH of 5.5 or lower. Breeding and cultivation of Al tolerance wheat can partially protect wheat escaping from Al toxicity. The scarcity of the tolerant sources impedes the wheat breeding. In order to find new Al tolerance sources, we screened 173 bread wheat landraces from Tibet of China using hydroponic screening. It was indicated that: (1) There were diversities on the root regenerate length (RRL). The RRL of a large of landraces were longer than 7.00 cm in pH 7 (58.38%) and pH 4.5 (66.47%), but shorter than 5.00 cm in pH 4.5 +50μM Al^3+ (80.93%). The low pH showed either promotion or restraining effects depend on landraces, but Al toxicity under low pH only showed restraining effects on the root elongation. (2) There were also diversities on root tolerance index of low pH (RTI 1) or root aluminum tolerance index (RTI2) among cultivars. The RTI1 varied from a narrow range but with relatively high value (0.8722-1.2953) in comparison with that of RTI2 (0.3829-1.0058), and the RTI1 of approximately 60% landraces was higher than 1.0000, the RTI2 of only 19.07% landraces was higher than 0.7000, suggesting that Al toxicity acted as an important factor for the reduction of the root elongation under acidic soils. (3) The RTI 1 of many wheats was higher than 1.0000, and As2256 and As2295 were the most tolerant for low pH, with RTI1 1.2953 and 1.2925, respectively. (4) Based on RTI2, seven wheats showed similar or higher tolerance to Al toxicity than Chinese Spring (CS), a known tolerance wheat. Much better tolerance existed in landraces of As1543 and As1242, which can be used as the new parents for Al tolerant breeding.
基金the support of Cooperative Research Program for Agriculture Science & Technology Development (PJ01246404)Rural Development Administration, Republic of Korea
文摘The purpose of this study is to identify major factors affecting the manufacture and quality of steamed bread,consumed in Southeast Asia including China,Japan,and Korea.Hence,flours of 11 Korean wheat cultivars were used to evaluate quality attributes of two different styles of steamed bread,Korean style steamed bread(KSSB)and northern-style Chinese steamed bread(NSCSB).KSSB prepared more ingredients and higher optimum water absorption of dough than NSCSB because Korean consumers prefer white and glossy surface and soft crumb.KSSB showed lower height,larger diameter and volume of steamed bread,higher stress relaxation,and softer texture of crumb than NSCSB.The correlation between flour characteristics and quality of steamed bread was different in KSSB and NSCSB.About 90%of variability in the height and volume of KSSB could be predicted from protein content,mixing tolerance of Mixograph,average particle size of flour,final viscosity and solvent retention capacity.Protein content and quality parameters also could explain the variation of steamed bread height in NSCSB.Korean wheat carrying Glu-A3c allele produced higher volume of steamed bread(704.7 mL)than Glu-A3d allele(645.8 mL)in KSSB,although there was no significant difference in volume of NSCSB by glutenin compositions.Glu-D1d and Glu-A3c alleles had softer texture of crumb than Glu-D1f and Glu-A3d alleles in KSSB,Glu-B3i allele also showed lower hardness of crumb than their counterpart allele in NSCSB.Hard wheat showed higher height and volume of steamed bread,and lower stress relaxation and hardness of crumb than soft wheat in KSSB.
文摘Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices.
基金supported by the National High Technology Research and Development Program of China(863 Program,2001AA241033 and 2006AA100102)Yunnan Provincial Education Department Scientific Research Program,China (08Y0166)
文摘Starch is the major component in the wheat kernel, which is mainly composed of amylose and amylopectin. The wheat without amylose in its endosperm was called "waxy wheat". Waxy wheat can be used to adjust the amylose content and improve the wheat-based food quality by adding to non-waxy wheat flour. In order to investigate the effect of waxy wheat flour on the quality of fresh and stale bread, waxy wheat flour was added into the flour of Canadian Spring Wheat 2 at 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, and 35.0% to make breads. The physicochemical properties were adjusted to suitability by adding Yangmai 158 flour, and breads were evaluated for sensory quality, crumb firmness, loaf volume and weight loss over a period of 0, 2, 4, and 6 days. The result showed that the best total score of fresh bread was 82.9 by adding waxy flour at 7.0%, though no significant difference was found among blends with 0.0-15.0% of waxy flour. Breads with the addition of 22.0% waxy flour had lower firmness, and decreasing loss of weight. Waxy wheat flour blend at 15.0% was optimal in retarding staling without significant decreasing fresh bread quality in comparison to the control.
基金the National Nature Science Foundation of China(No.3993110).
文摘Starch viscosity is closely associated with noodle quality. RVA(rapid viscosity analyzer) was used to investigate the paste property of leading Chinese wheat varieties arid 38 Australian wheat lines. Results showed that significant variability for RVA parameters was observed among Chinese wheat varieties, particularly among spring wheat varieties. In general, Australia wheat lines performed better paste characters than that of Chinese winter wheats. Genotype (G), environment (E) and genotype by environment (G×E) interaction affected all paste traits. Correlation analysis indicated that peak viscosity correlated highly and significantly with viscosity, breakdown, setback, final viscosity, peak time, and falling number(r = 0.56-0.93, P<0.01). However breakdown was not significantly associated with most paste properties. Paste characters increased from low to high latitude both in the north and south part of Yellow and Huai Valley.
基金the USDA National Institute of Food and Agriculture Hatch project KS17HA1008USDA Agricultural Research Service Cooperative Agreement 58-3020-9-017.
文摘Whole wheat bread is widely available worldwide,but it is always associated with less desirable dough processibility,small loaf volume,firm and gritty texture,and other distinctive attributes compared to white bread.Emulsifiers are commonly used to improve dough handling and baking quality during bread production.In present study,five emulsifiers(diacetyl tartaric acid esters of mono-and diglycerides(DATEM),polysorbate 80,sodium stearoyl lactylate(SSL),soy lecithin,and sucrose esters)were added during dough preparation of the whole wheat flour at 0.2%,0.5%,and 1.0%(flour weight basis).Dough rheological behavior and bread quality attributes,such as specific loaf volume and hardness,were measured.The results showed that DATEM,sucrose esters,and SSL increased the resistance to extension of the dough,whereas soy lecithin and polysorbate 80 increased the extensibility.Soy lecithin and polysorbate 80 were the only emulsifiers that significantly increased loaf volume compared to the control.Adding higher levels(1.0%)of sucrose esters,polysorbate 80,and SSL increased the formation of amylose-lipid complex and mitigate the crumb staling during storage.The results suggested that the emulsifiers could be applied to contribute to optimum functional quality of whole wheat bread.
文摘Field experiments were conducted during 2009/10 and 2010/2011 dry seasons at the Fadama Teaching and Research Farm of the Usmanu Danfodiyo University, Sokoto, in the Sudan Savanna ecological zone of Nigeria (latitude 13°01'N;longitude 5°15'E, altitude of 350 m above sea level) to study the effect of water stress, sowing date and cultivar on yield and yield components of wheat (Triticum aestivum L.). The treatments consisted of factorial combination of water stress at three critical growth stages which was imposed by withholding water at tillering, flowering, grain filling and control (no stress), four sowing dates (21st November, 5th December, 19th December and 2nd January) and two bread wheat cultivar (Star 11 TR 77173/SLM and Kuaz/Weaver), laid out in a split-plot design with three replications. Water stress and date of sowing were assigned to the main-plot, while variety was assigned to the sub-plots. Result revealed that water stress at tillering significantly reduced spike length and grains per spike. Whereas, water stress at flowering and grain filling significantly reduced 1000-grain weight, grain yield and harvest index. Results also indicated significant (P st November and 5th December and lowest at 19th December and 2nd January, therefore wheat should be sown in November or at least first week of December in this area and other area with similar climate. Variety had significant effect on spike per m-2, grain yield and harvest index. Water stress at flowering and grain filling should be avoided as they are the most critical growth stages in yield determination in wheat, because plants cannot recover, while delay in sowing resulted in reduction in yield and yield components. Star II TR 77173/SLM is therefore recommended for the area.
文摘Investigation of genetic diversity of geographically distant wheat genotypes is </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">useful approach in wheat breeding providing efficient crop varieties. This article presents multivariate cluster and principal component analyses (PCA) of some yield traits of wheat, such as thousand-kernel weight (TKW), grain number, grain yield and plant height. Based on the results, an evaluation of economically valuable attributes by eigenvalues made it possible to determine the components that significantly contribute to the yield of common wheat genotypes. Twenty-five genotypes were grouped into four clusters on the basis of average linkage. The PCA showed four principal components (PC) with eigenvalues ></span><span style="font-family:""> </span><span style="font-family:Verdana;">1, explaining approximately 90.8% of the total variability. According to PC analysis, the variance in the eigenvalues was </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">greatest (4.33) for PC-1, PC-2 (1.86) and PC-3 (1.01). The cluster analysis revealed the classification of 25 accessions into four diverse groups. Averages, standard deviations and variances for clusters based on morpho-physiological traits showed that the maximum average values for grain yield (742.2), biomass (1756.7), grains square meter (18</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;">373.7), and grains per spike (45.3) were higher in cluster C compared to other clusters. Cluster D exhibited the maximum thousand-kernel weight (TKW) (46.6).
基金Project supported by the National Agricultural Technology Projectof Indian Council of Agricultural Research, Department of Biotech-nology of Government of India, Council of Scientific and IndustrialResearch of India and Indian National Science Academy
文摘Quantitative trait loci (QTL) analysis was conducted in bread wheat for 14 important traits utilizing data from four different mapping populations involving different approaches of QTL analysis. Analysis for grain protein content (GPC) sug- gested that the major part of genetic variation for this trait is due to environmental interactions. In contrast, pre-harvest sprouting tolerance (PHST) was controlled mainly by main effect QTL (M-QTL) with very little genetic variation due to environmental interactions; a major QTL for PHST was detected on chromosome arm 3AL. For grain weight, one QTL each was detected on chromosome arms 1AS, 2BS and 7AS. QTL for 4 growth related traits taken together detected by different methods ranged from 37 to 40; nine QTL that were detected by single-locus as well as two-locus analyses were all M-QTL. Similarly, single-locus and two-locus QTL analyses for seven yield and yield contributing traits in two populations respectively allowed detection of 25 and 50 QTL by composite interval mapping (CIM), 16 and 25 QTL by multiple-trait composite interval mapping (MCIM) and 38 and 37 QTL by two-locus analyses. These studies should prove useful in QTL cloning and wheat improvement through marker aided selection.
文摘The feasibility of partially replacing wheat flour with malted rice flour in bread making was evaluated in several formulations, aiming to find a formulation for the production of malted rice-wheat bread with better nutritional quality and consumer acceptance. The whole grains of a local rice variety (Oryza sativa L. subsp. indica var. Mottaikaruppan) were steeped in distilled water (12 h, 30°C) and germinated for 3 days to obtain high content of soluble materials and amylase activity in bread making. The quality of bread was evaluated by considering the physical and sensorial parameters. When the wheat flour was substituted with malted rice flour, 35% substitution level and the malted rice flour from 3 days of germination was the best according to the physical and sensory qualities of bread. The quality of bread was improved by the addition of 20 g of margarine, 20 g of baking powder and 20 g of yeast in 1 kg of flour. Among different ratios of yeast and baking powder, 2:1 was the best. Bread improver containing amylases and oxidizing agents at the concentration of 40 g/kg was selected as the best concentration. When comparing the final formulation made in the bakery with wheat bread, malted rice-wheat bread contains more soluble dietary fiber (0.62%), insoluble dietary fiber (3.95%), total dietary fiber (4.57%) and free amino acid content (0.64 g/kg) than those in wheat bread (0.5%, 2.73%, 3.23% and 0.36 g/kg, respectively).
文摘Many edible legumes contain high amounts of proteins, fibers, minerals and vitamins. Their essential amino acid composition and concentration complements the amino acids in wheat and other cereals. In addition, breads fortified with protein rich legumes make the breads more palatable. In this study, we evaluated breads made from wheat flour partially substituted with soybean, navy bean, and lupin flours at 10%, 20%, and 30% levels. The physicochemical properties of breads were measured and compared with the control (made from 100% wheat flour). Statistical analysis was used to assess the significance of the differences. The breads fortified with soybean, lupin and navy bean flours showed remarkable springiness, similar to the breads made from wheat flour. However, the higher amount of substitution increased the firmness of the breads, probably due to the incorporation of additional fibers and proteins into the formulations. Compared to wheat bread, the volumes of 90:10 wheat-soybean, wheat-lupin, and wheat-navy bean breads decreased about 7%, 2%, and 10%, respectively. Higher substitution levels would result in a higher reduction in volume for all legumes tested. The volume reduction as a result of legume substitution appears to be navy bean flour > soybean flour > lupin flour. The inclusion of legumes in the bread formulations imparts a slightly darker crust color and crumb color with the exception of breads with the soybean flour substitution. Lupin appears to be the best substitution candidate among the legumes tested for fortified bread making. Lupin can be presented as a high-value protein source in developing marketable foods for health conscious consumers.
文摘Bread wheat (Triticum aestivum L.) is most important cereal crop in Ethiopia. Lack of genotypes with wide stability across environments has been one of the most important constraints of wheat production in the country. Field experiments were conducted in Halaba and Bule, South Ethiopia, in 2016 and 2017, in order to estimate grain yield stability and association among stability parameters. Fifteen improved bread wheat genotypes were grown under randomized complete block design with three replications. Mean yield for Halaba 2016, Halaba 2017, Bule 2016 and Bule 2017 was 3.83, 1.89, 2.90 and 3.59 tons/ha, respectively. Genotypes Lemu (3.25 tons/ha) and Mandoyu (3.18 tons/ha) had high mean yield, and low values of environmental variance (S2i), coefficient of variation (CVi), stability variance (δ2i), ecovalence (Wi) and deviation from regression (S2di). Genotypes Biqa (3.69 tons/ha) and Shorima (3.66 tons/ha) had high mean yield, coefficient of regression (bi) and coefficient of determination (R2i ≥ 0.94) as well as low values of δ2i, Wi and S2di. Grain yield had positive rank correlation with bi (r = 0.75, p 2i (r = 0.70, p δ2i, Wi and S2di was high (r ≥ 0.98, p , Mandoyu and Hidase, and Biqa and Shorima would be recommended for wide adaption, and for more favorable environments, respectively. It could also be suggested that one of Wi, δ2i, S2di and rank sum would be used for ranking of genotypes.
文摘Population varieties can meet the needs of organic farming as they are composed of diverse genotypes and have nutritional and sensory characteristics of interest. Their intra-specific genetic variability helps to adapt to the diversity of soil and climate conditions, management practices and needs. Moreover, an integrated organic bread sector has emerged willing to use more wheat populations. To explore sensory and nutritional potential of bread wheat populations, hedonic tests, sensory profile and nutritional analyses were implemented on eight wheat population varieties and one modern variety. Hedonic tests revealed consensus among consumer when ranking according to specific sensory characteristics and showed preferences for red wheat breads. Descriptive sensory test showed significant differences between genotypes on 6 out of 11 descriptors and confirmed the sensory specificity of red wheat accessions. Nutritional analyses showed differences especially on minerals content. Sensory differences between breads from different genotypes can be perceived both by trained and untrained panels as suggested by results. Moreover, red accessions showed specific sensory characteristics which are well-perceived by the two panels. Breeding effort should be maintained for high diverse genotypes with improved sensory and nutritional qualities adapted to organic farming conditions. Indicators like kernel colour should be sought to help integrate such criteria.
基金supported by the IRAN-ICARDA Enhanced Food Security Project,Iran(24-53-15-064-971144)。
文摘Growing concerns for food security and the alleviation of hunger necessitate knowledge-based crop management technologies for sustainable crop production.In this study,13 winter bread wheat genotypes(old,relatively old,modern,and breeding lines)were evaluated under three different tillage systems,i.e.,conventional tillage(CT,full tillage with residue removed),reduced tillage(RT,chisel tillage with residue retained)and no-tillage(NT,no-tillage with residue retained on the soil surface)in farmer’s fields under rainfed conditions using strip-plot arrangements in a randomized complete block design with three replications in the west of Iran(Kamyaran and Hosseinabad locations)over two cropping seasons(2018–2019 and 2019–2020).The main objectives were to investigate the effects of tillage systems and growing conditions on the agronomic characteristics,grain yield and stability performance of rainfed winter bread wheat genotypes.Significant(P<0.01)genotype×tillage system interaction effects on grain yield and agronomic traits suggested that the genotypes responded differently to the different tillage systems.The number of grains per spike and plant height were positively(P<0.0)associated with grain yield under the NT system,so they may be considered as targeted traits for future wheat breeding.Using statistical models,the modern cultivars(“Sadra”and“Baran”)were identified as high yielding and showed yield stability across the different tillage systems.As per each tillage system,genotype“Sadra”followed by“Zargana-6//Dari 1-7 Sabalan”exhibited higher adaption to CT;while cultivars“Jam”and“Azar2”showed better performance under the RT system;and cultivars“Varan”and“Baran”tended to have better performance expression in the NT condition.The increased grain yields achieved in combination with lower costs and greater profits from conservation agriculture suggest that adapted cultivar and NT systems should be evaluated and promoted more widely to farmers in the west of Iran as an attractive package of crop management technologies.In conclusion,variations in the performance of genotypes and the significant genotype×tillage system interaction effects on grain yield and some agronomic traits assessed in this study suggest that the development and selection of cultivars adapted to the NT system should be considered and included in the strategies and objectives of winter wheat breeding programs for the temperate and cold dryland conditions of Iran.
文摘In recent years, food authentication, in terms of geographical and varietal/animal origins, is considered of primary importance at all levels of the production process. Therefore, it is clear that there is an economic basis to develop analytical methods able to certify the declared origin of food products, in order to protect consumers and honest producers from fraud and unfair competition, respectively;consequently, during recent years, several food authentication techniques have been proposed. This review attempted to present in a critical way the contribution of High Resolution Nuclear Magnetic Resonance (HR-NMR) and Isotope Ratio Mass Spectrometry (IRMS) techniques in the assessment of quality and authenticity, mainly in terms of characterization of geographical and varietal origin, of wheat and wheat products, focusing on the most important studies to this direction.
文摘In order to study steamed bread quality traits and explore good wheat cultivars, 25 wheat cultivars grown in Shandong province were used through one-process fermentation procedure to examine the variability of steamed bread quality traits and the correlation between quality and score. The results showed that all the steamed bread quality traits expressed large variable coefficient except volume, L* value, l* value and cohesiveness traits, which suggested that the genetic diversity made from wheat in Shandong province was large. The average comprehensive score of the steamed bread was 76.8 for the tested 25 varieties, and ten varieties reached the good steamed bread level, which were Liangxing 99, Luyuan 205, Jimai 22, Jinan 17, Tainong 19, Wennong 17, Huaiyin 84137, and Huaimai 8. The main quality factors affecting the steamed bread score were volume, L* value, A* value, hardness, chewiness, and adhesiveness. Among these factors, the adhesiveness has a significantly positive correlation with the hardness and cohesive, and the volume has a significantly positive correlation with the A* value. The volume, L* value has a significantly positive correlation with score, A* value, hardness and chewiness, and gumminess has a significantly negative correlation with the score. There was no correlation between the score and other traits. The results will benefit the understanding of steamed bread quality in wheat cultivated in Shandong. l