期刊文献+
共找到2,597篇文章
< 1 2 130 >
每页显示 20 50 100
The Advantages of Methane Production by Combined Fermentation of Lignite and Wheat Straw
1
作者 Jiayuan Gu 《Advances in Bioscience and Biotechnology》 CAS 2024年第1期1-14,共14页
Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas prod... Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas production potential, microbial community and methanogenic metabolic pathways of mixture. Research has shown that mixed fermentation of lignite and straw significantly promoted biomethane production. The abundance of hydrolytic acidifying functional bacteria genera (Sphaerochaeta, Lentimicrobium) in mixed fermentation was higher than that in the fermentation of single lignite and single straw. The abundance of some key CAZy metabolic enzyme gene sequences in mixed fermentation group was increased, which was favorable to improve methane production. Aceticlastic methanogenesis was the most critical methanogenic pathway and acetic acid pathway was more competitive in methanogenic mode during peak fermentation. Macrogenomics provided theoretical support for the claim that mixed fermentation of coal and straw promoted biomethane metabolism, which was potentially valuable in expanding methanogenesis from mixed fermentation of lignite with different biomasses. 展开更多
关键词 LIGNITE wheat straw Mixed Fermentation Microbial Community Macrogenomics
下载PDF
Experimental Study on the Compressive Strength of Concrete with Different Wheat Straw Treatment Techniques
2
作者 Liang Wen Changhong Yan +3 位作者 Yehui Shi Zhenxiang Wang Gang Liu Wei Shi 《Journal of Renewable Materials》 EI 2023年第10期3681-3692,共12页
The treatment of wheat straw is very difficult,and its utilization rate is very low;accumulation causes air pollution and even fire.To make full use of wheat straw resources,we examined how using different physical an... The treatment of wheat straw is very difficult,and its utilization rate is very low;accumulation causes air pollution and even fire.To make full use of wheat straw resources,we examined how using different physical and chemical methods to treat the wheat straw which can improve its strength abilities,or enhance the activity of wheat straw ash.In terms of concrete additives,it can reduce the amount of cement used.In this paper,we found that alkali treatment can significantly improve the tensile strength of wheat straw fiber,but polyvinyl alcohol treatment has no obvious effect on the strength of wheat straw fiber after alkali treatment.At the same time,we analyzed the wheat straw fiber microstructure through scanning electron microscopy,and we also studied the wheat straw ash chemical composition after 600℃ high-temperature treatment.Through the compressive strength test,we found that the strength of concrete decreases with increasing of wheat straw fiber and wheat straw powder content,and the compressive strength of concrete with wheat straw ash instead of 5%cement decreases little,and the strength of the concrete also decreases with the increasing of wheat straw ash.Through the macroscopic observation of the failure form of concrete,we found that the failure form of concrete with wheat straw ash is similar to that of common concrete,while the failure degree of concrete with wheat straw fiber and wheat straw powder is weakened.Through the scanning electron microscope test of the concrete,it was found that wheat straw fiber has an effect on the cracking of concrete and the inner compactness of concrete can also be affected by adding wheat straw ash and wheat straw powder. 展开更多
关键词 wheat straw ash tensile strength scanning electron microscope compressive strength CONCRETE
下载PDF
Preparation and utilization of wheat straw anionic sorbent for the removal of nitrate from aqueous solution 被引量:9
3
作者 WANG Yu GAO Bao-yu +1 位作者 YUE Wen-wen YUE Qin-yan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第11期1305-1310,共6页
In order to reduce the impact of eutrophication caused by agricultural residues (i.e., excess nitrate) in aqueous solution, economic and effective anionic sorbents are required. In this article, we prepared anionic ... In order to reduce the impact of eutrophication caused by agricultural residues (i.e., excess nitrate) in aqueous solution, economic and effective anionic sorbents are required. In this article, we prepared anionic sorbent using wheat straw. Its structural characteristics and adsorption properties for nitrate removal from aqueous solution were investigated. The results indicate that the yield of the prepared anionic sorbent, the total exchange capacity, and the maximum adsorption capacity were 350%, 2.57 mEq/g, and 2.08 mmol/g, respectively. The Freundlich isotherm mode is more suitable than the Langmuir mode and the adsorption process accords with the first order reaction kinetic rate equation. When multiple anions (SO4^2-, H2PO4^-, NO3^-, and NO2^-) were present, the isotherm mode of prepared anionic sorbent for nitrate was consistent with Freundlich mode; however, the capacity of nitrate adsorption was reduced by 50%. In alkaline solutions, about 90% of adsorbed nitrate ions could be desorbed from prepared anionic sorbent. The results of this study confirmed that the wheat straw anionic sorbent can be used as an excellent nitrate sorbent that removes nitrate from aqueous solutions. 展开更多
关键词 ADSORPTION anionic sorbent NITRATE thermodynamic wheat straw (MWS) adsorption adsorption kinetics raw wheat straw (RWS) modified
下载PDF
Screening of a Composite Microbial System and Its Characteristics of Wheat Straw Degradation 被引量:17
4
作者 LI Pei-pei WANG Xiao-juan YUAN Xu-feng WANG Xiao-fen CAO Yan-zuan CUI Zong-jun 《Agricultural Sciences in China》 CAS CSCD 2011年第10期1586-1594,共9页
To accelerate the decomposition of wheat straw directly returned to soil, we constructed a microbial system (ADS-3) from agricultural soil containing rotting straw residues using a 40-wk limited cultivation. To asse... To accelerate the decomposition of wheat straw directly returned to soil, we constructed a microbial system (ADS-3) from agricultural soil containing rotting straw residues using a 40-wk limited cultivation. To assess its potential use for accelerating straw decomposing, the decomposing characteristics and the microbial composition of ADS-3 were analyzed. The results indicated that it could degrade wheat straw and filter paper by 63.8 and 80%, respectively, during 15 d of incubation. Straw hemicellulose degraded dramatically 51.2% during the first 3 d, decreasing up to 73.7% by the end of incubation. Cellulose showed sustained degradation reaching 53.3% in 15 d. Peak values of xylanase and cellulase activities appeared at 3 and 11 d, with 1.32 and 0.15 U mL-1, respectively. Estimated pH averaged 6.4-7.6 during the degradation process, which approximated acidity and alkalinity of normal soils. The microbial composition of ADS-3 was stable based on denaturing gradient gel electrophoresis (DGGE) analysis. By using bacterial 16S rRNA and fungal 26S rRNA gene clone library analysis, 20 bacterial clones and 7 fungal clones were detected. Closest identified relatives of bacteria represented by Bacillus fusiformis, Cytophaga sp., uncultured Clostridiales bacterium, Ruminobacillus xylanolyticum, Clostridium hydroxybenzoicum, and uncultured proteobacterium and the fungi were mainly identified as related to Pichia sp. and uncultured fungus. 展开更多
关键词 wheat straw degradation composite microbial system CELLULOSE hemicelulose CELLULASE XYLANASE microbial composition
下载PDF
Effect of Long-Term Application of K Fertilizer and Wheat Straw to Soil on Crop Yield and Soil K Under Different Planting Systems 被引量:25
5
作者 TAN De-shui JIN Ji-yun HUANG Shao-wen LI Shu-tian HE Ping 《Agricultural Sciences in China》 CAS CSCD 2007年第2期200-207,共8页
Effect of application of K fertilizer and wheat straw to soil on crop yield and status of soil K in the plough layer under different planting systems was studied. The experiments on long-term application of K fertiliz... Effect of application of K fertilizer and wheat straw to soil on crop yield and status of soil K in the plough layer under different planting systems was studied. The experiments on long-term application of K fertilizer and wheat straw to soil in Hebei fluvo aquic soil and Shanxi brown soil in northern China were begun in 1992. The results showed that K fertilizer and straw could improve the yields of wheat and maize with the order of NPK + St 〉 NPK 〉 NP + St 〉 NP, and treatment of K fertilizer made a significant difference to NP, and the efficiency of K fertilizer in maize was higher than in wheat under rotation system of Hebei. In contrast with Shanxi, the wastage of soil potassium was a more serious issue in the rotation system in Hebei, only treatment of NPK + St showed a surplus of potassium and the others showed a wane. K fertilizer and straw could improve the content of water-soluble K, nonspecifically adsorbed K, non-exchangeable K, mineral K, and total K in contrast to NP; however, K fertilizer and straw reduce the proportion of mineral K and improve proportion of other forms of potassium in the two locating sites. Compared with the beginning of orientation, temporal variability character of soil K content and proportion showed a difference between the two soil types; furthermore, there was a decrease in the content of mineral K and total K simultaneously in the two locating sites. As a whole, the effect of K fertilizer applied to soil directly excelled to wheat straw to soil. Wheat straw to soil was an effective measure to complement potassium to increase crop yield and retard the decrease of soil K. 展开更多
关键词 different planting systems long-term application of K fertilizer wheat straw to soil crop yield soil K
下载PDF
Cement-bonded particleboard with a mixture of wheat straw and poplar wood 被引量:8
6
作者 Morteza Nazerian Vajiihe Sadeghiipanah 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第2期381-390,共10页
We investigated the hydration behavior and some physical/mechanical properties of cement-bonded particleboard (CBPB) containing particles of wheat straw and poplar wood at various usage ratios and bonded with Portla... We investigated the hydration behavior and some physical/mechanical properties of cement-bonded particleboard (CBPB) containing particles of wheat straw and poplar wood at various usage ratios and bonded with Portland cement mixed with different levels of inorganic additives. We determined the setting time and compression strength of cement pastes containing different additives and particles, and studied the effects of these additives and particles on thickness swelling, internal bond strength and modulus of rupture of CBPB by using RSM (Response Surface Methodology). The mathematical model equations (second-order response functions) were derived to optimize properties of CBPB by computer simulation programming. Predicted values were in agreement with experimental values (R2 values of 0.93, 0.96 and 0.96 for TS, IB and MOR, respectively). RSM can be efficiently applied to model panel properties. The variables can affect the properties of panels. The cement composites with bending strength 〉 12.5 MPa and internal bond strength 〉 0.28 MPa can be made by using wheat straw as a reinforcing material. Straw particle usage up to 11.5% in the mixture satisfies the minimum requirements of International Standard, EN 312 (2003) for IB and MOR. The dose of 4.95% calcium chloride, by weight of cement, can improve mechanical properties of the panels at the minimum requirement of EN 312. By increasing straw content from 0 to 30%, TS was reduced by increasing straw particle usage up to 1.5% and with 5.54% calcium chloride in the mixture, TS satisfied the EN 312 standard. 展开更多
关键词 cement-bonded particleboard wheat straw POPLAR ADDITIVES setting time physical and mechanical properties
下载PDF
Wettability changes of wheat straw treated with chemicals and enzymes 被引量:7
7
作者 SHEN Jiang-hua LIU Zhi-ming LI Jing NIU Jing 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第1期107-110,共4页
A study was conducted to test wettability changes of the wheat straw treated with different methods for the preparation of wheat straw particle board. The wheat straws were separately sprayed with two chemicals (0.6%... A study was conducted to test wettability changes of the wheat straw treated with different methods for the preparation of wheat straw particle board. The wheat straws were separately sprayed with two chemicals (0.6% NaOH, 0.3% H2O2) and three enzymes (lipase, xylanase, cellulase). The contact angle between water and the surface of wheat straw was measured and the spreading-penetration parameters (K-values) were also calculated with wetting model. The surfaces of treated wheat straw and control sample were scanned by means of Micro-FTIR, and their peaks arrangements were analyzed. The surface morphologies of treated wheat straw and control sample were also observed by SEM. Chemical etching was found on the exterior surfaces of the straws treated separately with 0.6% NaOH and 0.3% H2O2; furthermore, the spreading-penetration parameters (K-values) of the distilled water on the exterior surfaces of the treated wheat straw along the grain were higher than that of control. The wettability of exterior surfaces of the wheat straws treated separately with lipase, xylanase and cellulose were improved after treating for seven days, and among the three enzymes treatments, the lipase treatment showed best result. The lipase treatment and NaOH treatment were determined as better methods for improving the wettability of wheat straw surfaces. However, in the economic aspect, NaOH treatment was more practical and easier in the pretreatment for the manufacture of straw particle board. 展开更多
关键词 wheat straw WETTABILITY contact angle CHEMICALS ENZYME
下载PDF
Use of amino silane coupling agent to improve physical and mechanical properties of UF-bonded wheat straw(Triticum aestivum L.) poplar wood particleboard 被引量:3
8
作者 Seyedeh Masoumeh Hafezi Aliakbar Enayati +2 位作者 Kazem Doost Hosseini Asghar Tarmian Sayed Ahmad Mirshokraii 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第2期427-431,共5页
We evaluated the potential use of amino silane coupling agent (SiNH) to improve physical and mechanical properties of UF-bonded wheat straw (Triticurn aestivum L.) poplar wood particleboard. We examined the effect... We evaluated the potential use of amino silane coupling agent (SiNH) to improve physical and mechanical properties of UF-bonded wheat straw (Triticurn aestivum L.) poplar wood particleboard. We examined the effects of varied content of silane coupling agent content and ratios of straw to poplar wood particles on particleboard prop- erties. The ratios of straw to poplar wood particles were 100:0, 85:15, 70:30 and 55:45. Silane coupling agent content was tested at three levels, 0, 5 and 10 %. The experimental panels were tested for their mechanical strength, including modulus of elasticity (MOE), modulus of rupture (MOR), intemal bonding (IB) and physical properties according to procedures specified in DIN 68763 (Chipboard for special purposes in building construction: concepts, requirements, testing, 1982-03, 1982). All board properties were improved by the addition of silane cou- pling agent. The use of poplar wood particles had a positive effect on the mechanical properties of wheat straw parti- cleboard but had a negative effect on physical properties (thickness swelling and water absorption). 展开更多
关键词 wheat straw particleboard Poplar wood UFresin Silane coupling age
下载PDF
The Effects of Three Mineral Nitrogen Sources and Zinc on Maize and Wheat Straw Decomposition and Soil Organic Carbon 被引量:7
9
作者 Ogunniyi Jumoke Esther GUO Chun-hui +2 位作者 TIAN Xiao-hong LI Hong-yun ZHOU Yang-xue 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第12期2768-2777,共10页
The incorporation of straw in cultivated ifelds can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this s... The incorporation of straw in cultivated ifelds can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this study was to determine the effects of different nitrogen sources, with and without the application of zinc, on straw decomposition and soil quality. Soils were treated with three different nitrogen sources, with and without zinc: urea (CO(NH2)2), ammonium sulfate ((NH4)2SO4), and ammonium chloride (NH4Cl). The combined treatments were as follows:maize (M) and wheat (W) straw incorporated into urea-, ammonium sulfate-, or ammonium chloride-treated soil (U, S, and C, respectively) with and without zinc (Z) (MU, MUZ, WU, WUZ;MS, MSZ, WS, WSZ;MC, MCZ, WC, WCZ, respectively);straw with zinc only (MZ, WZ);straw with untreated soil (MS, WS);and soil-only or control conditions (NT). The experiment consisted of 17 treatments with four replications. Each pot contained 150 g soil and 1.125 g straw, had a moisture content of 80%of the ifeld capacity, and was incubated for 53 days at 25°C. The rates of CO2-C emission, cumulative CO2-C evolution, total CO2 production in the soils of different treatments were measured to infer decomposition rates. The total organic carbon (TOC), labile organic carbon (LOC), and soil microbial biomass in the soils of different treatments were measured to infer soil quality. All results were signiifcantly different (P〈0.05) with the exception of the labile organic carbon (LOC). The maize and wheat straw showed different patterns in CO2 evolution rates. For both straw types, Zn had a synergic effect with U, but an antagonistic effect with the other N sources as determined by the total CO2 produced. The MUZ treatment showed the highest decomposition rate and cumulative CO2 concentration (1 120.29 mg/pot), whereas the WACZ treatment had the lowest cumulative CO2 concentration (1 040.57 mg/pot). The addition of NH4Cl resulted in the highest total organic carbon (TOC) concentration (11.59 mg kg-1). The incorporation of wheat straw resulted in higher microbial biomass accumulation in soils relative to that of the maize straw application. The results demonstrate that mineral N sources can affect the ability of microorganisms to decompose straw, as well as the soil carbon concentrations. 展开更多
关键词 nitrogen sources zinc carbon fractions straw mineralization wheat straw maize straw LOC
下载PDF
The effect of increased atmospheric temperature and CO_2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw 被引量:1
10
作者 Xiangyu He Yanping Wu +4 位作者 Min Cai Chunlong Mu Weihong Luo Yanfen Cheng Weiyun Zhu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2015年第4期455-462,共8页
This experiment was conducted to investigate the effects of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of whe... This experiment was conducted to investigate the effects of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw. The field experiment was carried out from November 2012 to June 2013 at Changshu (31°32′93″N, 120°41′88″E) agro-ecological experimental station. A total of three treatments were set. The concentration of CO2 was increased to 500 pmol/mol in the first treatment (CO2 group). The temperature was increased by 2℃ in the second treatment (TEM group) and the concentration of CO2 and temperature were both increased in the third treatment (CO2 + TEM group). The mean temperature and concentration of CO2 in control group were 10.5 ℃ and 413μmol/mol. At harvesting, the wheat straws were collected and analyzed for chemical composition and in vitro digestibility. Results showed that dry matter was significantly increased in all three treatments. Ether extracts and neutral detergent fiber were significantly increased in TEM and CO2 + TEM groups. Crude protein was significantly decreased in CO2+TEM group. In vitro digestibility analysis of wheat straw revealed that gas production was significantly decreased in CO2 and CO2 + TEM groups. Methane production was significantly decreased in TEM and CO2 + TEM groups. Ammonia nitrogen and microbial crude protein were significantly decreased in all three treatments. Total volatile fatty acids were significantly decreased in CO2 and CO2 + TEM groups. In conclusion, the chemical composition of the wheat straw was affected by temperature and CO2 and the in vitro digestibility of wheat straw was reduced, especially in the combined treatment of temperature and CO2. 展开更多
关键词 Chemical composition CO2 In vitro digestibility TEMPERATURE wheat straw
下载PDF
Effect of ultrasonic assisted KOH pretreatment on physiochemical characteristic and anaerobic digestion performance of wheat straw 被引量:1
11
作者 Rashid Mustafa Korai Xiujin Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第9期2409-2416,共8页
In this study,ultrasonic field was applied during potassium hydroxide(KOH) pretreatment of wheat straw(WS).Three concentrations of KOH(2%,4%,and 6%) were tested during pretreatment.The results showed that there was a ... In this study,ultrasonic field was applied during potassium hydroxide(KOH) pretreatment of wheat straw(WS).Three concentrations of KOH(2%,4%,and 6%) were tested during pretreatment.The results showed that there was a significant influence of the ultrasonic assisted KOH pretreatment(KOH(Upt)) on physiochemical characteristics of WS during pretreatment as well as on digester performance.The pretreatment time was optimized to 36 h for all KOH concentrations.The highest total volatile fatty acid(TVFA) productions(3189 mg·L^-1) from 6%KOHupt samples were observed.Similarly,the SEM analysis and FTIR observation revealed that KOH(Upt) effectively disrupted the physical morphology of WS and successful breaking of lignin and hemicellulose linkage between carboxyl groups.Moreover,the highest biogasification(555 ml·(g VS(loaded))^-1) and biomethane productions(282 ml·(g VS(loaded))^-1) from 4%KOH(Upt) digesters,with 69% of biodegradability,indicated significant availability of organic matter from KOH(Upt).The R^2 values(0.993-0.998) in Modified Gompertz Model indicated that the model was feasible to predict methane yield for this study.Similarly,the Bo values for 4%KOH(Upt)(283.30±2.74 ml·(gVS(loaded))^-1) were also in agreement to the experimental methane yield.These results suggested that ultrasonic addition during KOH pretreatment of WS can effectively increase the organic yield during pretreatment.Moreover,the increase in methane production from 4% KOH(Upt) suggested that digester performance can be improved with lower KOH concentrations using this pretreatment. 展开更多
关键词 Ultrasonic pretreatment Potassium hydroxide(KOH) wheat straw Anaerobic digestion BIOGASIFICATION BIOMETHANE
下载PDF
Structural Changes of Wheat Straw Lignin during Formic Acid Treatment 被引量:5
12
作者 RuiXue Dong XiuWen Mei +2 位作者 Chang Ma MingFei Li YongMing Fan 《Paper And Biomaterials》 2016年第2期16-22,共7页
The aromatic nature of lignin makes it a potential renewable source of chemicals and other valuable products.Isolation of lignin from lignocellulosic biomass using organic solvents enables the production of high-purit... The aromatic nature of lignin makes it a potential renewable source of chemicals and other valuable products.Isolation of lignin from lignocellulosic biomass using organic solvents enables the production of high-purity lignin.The use of formic acid in the organosolv pulping and fractionation process has been widely studied.Characterization of lignin is necessary to achieve valueadded applications of lignin.To simplify the isolation of formic acid-treated lignin,herein,milled wheat straw lignin(MWSL) was employed as an archetype for characterization of the structural changes of lignin during formic acid treatment.The results showed that the MWSL was GSH-type(comprising p-hydroxyphenyl(H),guaiacyl(G),and syringyl(S) monolignols) and underwent structural changes during formic acid treatment.Lignin was esterified during the formic acid treatment.The content of alkyl hydroxyl groups in lignin decreased upon formic acid treatment,corresponding to an increase of the number of double bond equivalents(DBE).Lignin units with active reaction sites were liable to slight condensation,which resulted in a moderate increase of the molecular weight.The molecular weight distribution of formic acid-treated MWSL(FMWSL) was wider than that of the MWSL,although the molecular weight of both species did not differ significantly.The β-O-4 linkage in lignin was partially cleaved during formic acid treatment,resulting in the production of new phenolic structures.This improved the solubility of lignin in the cooking liquor and its reactivity for downstream applications. 展开更多
关键词 formic acid wheat straw lignin structural characterization
下载PDF
Upgrading of Raw Wheat Straw Applying Fungal Treatment 被引量:1
13
作者 Zaazaa Ahmed Shraim Faisal Abo Omar Jamal 《Open Journal of Animal Sciences》 2021年第3期376-383,共8页
The goal of this research was to improve the nutritive value of local wheat straw (WS) through treatment with fungi <i><i><span>Pleurotus</span></i><span></span></i><... The goal of this research was to improve the nutritive value of local wheat straw (WS) through treatment with fungi <i><i><span>Pleurotus</span></i><span></span></i><span> and to determine the nutrients digestibility using Daisy<sup>II</sup> technique. Results showed that fungal treated WS had more (P < 0.05) levels of dry matter (DM), ash and phosphorus (P) compared to the untreated WS. Moreover, fungal treatment had significant effect on reduction (P < 0.05) of crude fiber, acid detergent fiber (ADF) and neutral detergent fiber (NDF), and resulted in significant increase (P < 0.05) in crude protein (CP) content. Fungal treatment increased digestibility of DM, CP, NDF, ADF and gross energy (GE) by 12%, 27%, 28%, 2% and 12%, respectively. It can be concluded that fungal treatment has an advantage in upgrading raw WS.</span> 展开更多
关键词 wheat straw FUNGI DaisyII Incubator DIGESTIBILITY
下载PDF
Enhancement of Enzymatic Saccharification of Wheat Straw Residue by Ammonium Sulfite Pretreatment 被引量:2
14
作者 Yu Zhang JiaQing Lyu +1 位作者 ShuJing Zhao YongCan Jin 《Paper And Biomaterials》 2017年第2期18-25,共8页
Efficient utilization of wheat straw residue(WSR) from pulp mills is an important priority for the sustainable development of the pulp and paper industry. In this study, the effects of ammonium sulfite(AS) pretreatmen... Efficient utilization of wheat straw residue(WSR) from pulp mills is an important priority for the sustainable development of the pulp and paper industry. In this study, the effects of ammonium sulfite(AS) pretreatment with different AS charges(wt%) and pretreatment temperatures on the chemical composition and enzymatic hydrolysis of WSR were studied. The results revealed that more lignin was removed with the increase of pretreatment temperature and AS charge. The degradation of hemicellulose became severe at high pretreatment temperature, while cellulose remained stable during the pretreatment process. The enzymatic hydrolysis efficiency of pretreated WSR was increased and then decreased with the increase of the AS charge and pretreatment temperature. The AS charge exerts a stronger effect on enzymatic hydrolysis efficiency than the pretreatment temperature. Glucan and xylan conversion ratios up to 88.9% and 44.9%, respectively, were obtained. The highest total sugar conversion ratio was 67.0% when WSR pretreated with 16% AS at 165℃ was hydrolyzed with a cellulase loading of 40 FPU per gram of glucan. 展开更多
关键词 wheat straw residue ammonium sulfite pretreatment enzymatic hydrolysis efficiency
下载PDF
Sulfite-Formaldehyde Pulping and Oxygen Delignification of Wheat Straw 被引量:1
15
作者 WenJuan Wu Yu Zhang +1 位作者 Bo Jiang YongCan Jin 《Paper And Biomaterials》 2017年第3期12-17,共6页
In this study,wheat straw pulp was prepared by sulfiteformaldehyde(SF) pulping combined with oxygen delignification to develop a sustainable methodology for chemical pulping of straw materials.The bleachability of oxy... In this study,wheat straw pulp was prepared by sulfiteformaldehyde(SF) pulping combined with oxygen delignification to develop a sustainable methodology for chemical pulping of straw materials.The bleachability of oxygen-delignified SF pulp was also evaluated by hypochlorite bleaching.The results indicated that the Na_2SO_3 charge played an important role in lignin removal during SF pulping as well as oxygen delignification.The efficiency of oxygen delignification of wheat straw SF pulp was markedly high.After the oxygenation stage,the Kappa number decreased by over 50%(the original Kappa number of SF pulp was lower than 30) when the Na OH charge was in the range of 3%~5%.The optimal conditions for preparing bleached pulp via combined SF pulping and oxygen delignification involved the use of 12% of Na_2SO_3 and 3% of Na OH,respectively.Pulp with relatively high brightness,a low Kappa number,as well as an acceptable viscosity could be obtained when oxygen-delignified SF pulp was bleached with hypochlorite under a low active chlorine dosage. 展开更多
关键词 sulfite-formaldehyde pulping oxygen delignification Kappa number wheat straw
下载PDF
The influence of silane coupling agent and poplar particles on the wettability, surface roughness, and hardness of UF-bonded wheat straw(Triticum aestivum L.)/poplar wood particleboard
16
作者 Seyedeh Masoumeh Hafezi Kazem Doosthoseini 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第3期667-670,共4页
We used silane coupling agents to improve the bonding ability between wheat straw particles and UF resin, and investigated surface properties (wettability and surface roughness) and hardness of parti-cleboard made f... We used silane coupling agents to improve the bonding ability between wheat straw particles and UF resin, and investigated surface properties (wettability and surface roughness) and hardness of parti-cleboard made from UF-bonded wheat straw (Triticum aestivum L.) combined with poplar wood as affected by silane coupling agent content and straw/poplar wood particle ratios. We manufactured one-layered particleboard panels at four different ratios of straw to poplar wood par-ticles (0%, 15%, 30% and 45% wheat straw) and silane coupling agent content at three levels of 0, 5% and 10%. Roughness measurements, average roughness (Ra), mean peak-to-valley height (Rz), and root mean square roughness (Rq) were measured on unsanded samples by using a fine stylus tracing technique. We obtained contact angle measurements by using a goniometer connected to a digital camera and computer sys-tem. Boards containing greater amounts of poplar particles had superior hardness compared to control samples and had lower wettability. Panels made with higher amounts of silane had lower Rq values. 展开更多
关键词 wheat straw particleboard poplar wood surface properties wettability silane coupling agent HARDNESS
下载PDF
Wheat Straw Burial Improves Physiological Traits, Yield and Grain Quality of Rice by Regulating Antioxidant System and Nitrogen Assimilation Enzymes under Alternate Wetting and Drying Irrigation
17
作者 Yousef ALHAJ HAMOUD Hiba SHAGHALEH +5 位作者 WANG Ruke Willy Franz GOUERTOUMBO Amar Ali ADAM HAMAD Mohamed Salah SHETEIWY WANG Zhenchang GUO Xiangping 《Rice science》 SCIE CSCD 2022年第5期473-488,共16页
Wheat straw burial has great potential to sustain rice production under alternate wetting and drying(AWD)irrigation.A field experiment was conducted with three wheat straw burial treatments,including without straw bur... Wheat straw burial has great potential to sustain rice production under alternate wetting and drying(AWD)irrigation.A field experiment was conducted with three wheat straw burial treatments,including without straw burial(NSB),with light straw burial of 300 kg/hm^(2)(LSB)and dense straw burial of 800 kg/hm^(2)(DSB),as well as three AWD regimes:alternate wetting/moderate drying(AWMD),alternate wetting/severe drying(AWSD)and alternate wetting/critical drying(AWCD).The rice growth and grain quality were higher in LSB and NSB than those in NSB under the same AWD regime.The AWMD×DSB treatment resulted in the highest yield,brown rice rate,milled rice rate,amylose content and protein content.Conversely,the AWCD×NSB treatment led to the lowest yield,brown rice rate,milled rice rate,amylose content and protein content.The active absorption area and nitrate reductase activity of roots were higher in the AWMD×DSB treatment than those in the AWCD×NSB treatment,as the former increased organic carbon and nitrogen contents in the rhizosphere,whereas the latter reduced their availability.Total soluble protein content and glutamine synthetase activity were greater in the AWMD×DSB treatment than those in the AWCD×NSB treatment.The activities of superoxide dismutase and catalase were higher in the AWMD×DSB treatment compared with the AWCD×NSB treatment,leading to the amelioration of oxidative cell injury,as shown by a lower malonaldehyde level.This study suggested that farmers should implement AWMD irrigation after leaving the straw residues in the field,followed by deep tillage to improve soil quality and mitigate the drought stress cycles of AWD.This approach can improve rice growth and grain quality and alleviate the problems of disposal of straw residues and water scarcity for sustainable rice production. 展开更多
关键词 antioxidant enzyme activity wheat straw burial irrigation regime nitrogen uptake Oryza sativa grain quality YIELD
下载PDF
Dissolution of highly molecular weight cellulose isolated from wheat straw in deep eutectic solvent of Choline/L-Lysine hydrochloride
18
作者 Jiake Wang Yan Wang +1 位作者 Zhongzheng Ma Lifeng Yan 《Green Energy & Environment》 SCIE CSCD 2020年第2期232-239,共8页
Green solvents for cellulose dissolution is a key topic for green chemistry,especially natural cellulose with high molecular weight,and there are scarce solvents reported.Deep eutectic solvent(DES)is a typical kind of... Green solvents for cellulose dissolution is a key topic for green chemistry,especially natural cellulose with high molecular weight,and there are scarce solvents reported.Deep eutectic solvent(DES)is a typical kind of green solvent that has been attracted much attention recently.Here,high molecular weight natural cellulose(DP>3000)was first isolated from wheat straw and then be directly dissolved in the choline/L-lysine(Ch/Lys)DES.The solution owns excellent stability,and the solubility reaches^5%.Rheological studies revealed that the natural cellulose can be well dispersed in the DES solution and showed gelation at high concentrations.The dissolved cellulose can be regenerated when the dilute acid aqueous solution was added into the solution.It provides an energy conversation and an environmentally friendly route to prepare a cellulose solution,which makes it possible to convert cellulose to valuable chemicals and materials in its homogeneous solution. 展开更多
关键词 Deep eutectic solvent(DES) Choline/L-Lysine hydrochloride wheat straw Natural cellulose SOLVENT
下载PDF
Evaluation on the Nutritive Value of Micro-storage Wheat Straw Using Gas Production Technique in vitro
19
作者 FENG Yu-zhe WU Ke-xuan +1 位作者 ZHANG Xiao-wei ZHANG Yan 《Animal Husbandry and Feed Science》 CAS 2012年第5期197-200,215,共5页
[ Objective] The research aimed to improve the utilization ratio of wheat strew in Qinghai Province. [ Method] During wheat straw microstorage, the pH, crude protein (CP), crude fiber (CF), ether extract (EE) an... [ Objective] The research aimed to improve the utilization ratio of wheat strew in Qinghai Province. [ Method] During wheat straw microstorage, the pH, crude protein (CP), crude fiber (CF), ether extract (EE) and water content in wheat strew at different micro-storage periods were determined. The effects of micro-storage time on the quality of wheat strew were studied and evaluated by using gas production technique in vitro. [Result] pH in each test group gradually decreased with the micro-storege time, which was all significantly lower than that in control group (P 〈0.01 ). CP content in all test groups increased with the micro-storage time, which was all higher than that in control group. CF content in all test groups decreased with the h^icro-storage time, significantly lower than that in control group ( P 〈 0.01 ). EE content in all experimental groups showed a gradual increase trend with the micro-storege time, which was all higher than that in control group, without significant difference compared with control group (P〉0.05). Water content in test groups went down with the micro-storage time. With the increase of micro-storage time, net gas production, dry matter degradability, organic matter degradability, digestible energy and metabolizable energy went up gradually. [ Conclusion] Comprehensively considering the micro-storege effect of wheat strew in each period and actual production application, we suggest that 22-day micro-storege for wheat straw could meet the demand of actual production. 展开更多
关键词 Micre-storege time wheat straw Feed quality Nutritive value
下载PDF
Design and Experimental Evaluation of a Spiral Feeding Device Based on Friction Characteristics of Wheat Straw
20
作者 Chen Hai-tao Min Shi-yao Li Long-hai 《Journal of Northeast Agricultural University(English Edition)》 CAS 2020年第2期144-151,共8页
The aims of this study were to achieve working stability and continuity of the straw fibre extruder(D200)to improve the transportation efficiency of pretreated straw materials mulch film.Based on a theoretical analysi... The aims of this study were to achieve working stability and continuity of the straw fibre extruder(D200)to improve the transportation efficiency of pretreated straw materials mulch film.Based on a theoretical analysis of wheat straw friction characteristics and the mechanics model of wheat straw transport,a tilting variable-diameter spiral feeding device matched the designed straw fibre extruder(D200-type).Experimental researches were performed by using the orthogonal test method of the L16(45)to obtain the optimal parameter combination.The spiral angle,the speed of the screw shaft and the moisture content of straw raw materials were selected as influencing factors,and feeding efficiency was selected as the objective indicator.The results showed that the spiral angle,the rotating speed of screw shaft and the moisture content of straw raw materials had very significant effects on the feeding efficiency(p<0.01).The order of the extent of the influence of parameters on the feeding efficiency of wheat straw raw materials from high to low was the moisture content,the spiral angle and the speed of screw shaft.When the maximum transfer efficiency per unit time of the inclined spiral feeding device was 1040.8 kg·h-1,the spiral angle was 40?,the speed of screw shaft was 200 r·min-1 and the moisture content was 65%.Verification experiment proved the feasibility of straw fibre extruder designed. 展开更多
关键词 straw fibre extruder wheat straw feeding device screw conveying orthogonal test
下载PDF
上一页 1 2 130 下一页 到第
使用帮助 返回顶部