期刊文献+
共找到2,061篇文章
< 1 2 104 >
每页显示 20 50 100
Soybean maize strip intercropping:A solution for maintaining food security in China
1
作者 Jiang Liu Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2503-2506,共4页
The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,pr... The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,promoting conventional intercropping strategies in modern agriculture can prove challenging.The innovative technology of soybean maize strip intercropping(SMSI)has been proposed as a solution.This system has produced remarkable results in improving domestic soybean and maize production for both food security and sustainable agriculture.In this article,we provide an overview of SMSI and explain how it differs from traditional intercropping.We also discuss the core principles that foster higher yields and the prospects for its future development. 展开更多
关键词 strip intercropping food security soybean maize spatial arrangement
下载PDF
Assessment of Nitrogen Fixation, Uptake, and Leaching in Maize/Soybean Intercropping System at Varied Soil Depths and under Phosphorus Application in Chinese Agricultural Settings
2
作者 Bertha Magombo Chunjie Li Benjamin Kolie 《Natural Resources》 2024年第7期173-187,共15页
The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducte... The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducted in Quzhou, Hebei Province, China, with MC812 maize and Jidou12 soybean varieties. Soil samples were taken from each plot to create a composite sample. The results show that nitrogen concentration varies at different depths and is higher in all treatments between 40 and 100 cm. Incorporating intercropping of maize and soybeans into farming practices can lead to more sustainable and environmentally friendly agriculture in China. 展开更多
关键词 Nitrogen maize/soybean FERTILIZATION INTERCROPPING Soil FIXATION
下载PDF
Assessing the Influence of Phosphorus Fertilization on the Growth and Yield of Maize/Soybean Intercrop by Analyzing Nitrogen Uptake
3
作者 Bertha Magombo Chunjie Li Benjamin Kolie 《Natural Resources》 2024年第8期189-210,共22页
Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitro... Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitrogen uptake in maize and soybean intercropping systems under different growth stages and phosphorus fertilization levels and investigates the influence of nitrogen uptake on growth parameters such as plant height, leaf area, and biomass accumulation in the maize/soybean intercrop under different phosphorus fertilization regimes. The study also collected chlorophyll samples at different growth stages of maize in monoculture and intercropping with maize or soybean. The results showed that plant height was greater in V10 in both fertilized and unfertilized treatments for intercropped maize and soybean, and chlorophyll concentration was higher in VT intercropped maize. The results also showed a higher accumulation of biomass. Understanding the growth dynamics of these plants in monoculture and intercropping systems and the impact of fertilization practices is crucial for optimizing crop productivity and sustainability in agricultural systems. 展开更多
关键词 INTERCROPPING FERTILIZATION CHLOROPHYLL maize/soybeans Nitrogen
下载PDF
Water Footprint of Soybean, Maize and Wheat in Pergamino, Argentina
4
作者 Luciana Tozzini Alejandro Pannunzio Pamela Texeira Soria 《Agricultural Sciences》 2021年第3期305-323,共19页
Nowadays more than 70% of the fresh water available worldwide is used for agriculture. In Argentina, extensive crops are not usually irrigated, so the cropping production depends mostly on rainfall water. In order to ... Nowadays more than 70% of the fresh water available worldwide is used for agriculture. In Argentina, extensive crops are not usually irrigated, so the cropping production depends mostly on rainfall water. In order to know how many liters of water are needed to produce a ton of soybeans, wheat and maize in the Pergamino district, Province of Buenos Aires, its Water Footprint was estimated by the Hoekstra method. Evaporation and rainfall data was obtained from SIGA INTA platform and production data was obtained from the Ministry of Agriculture. The results indicated that the average annual total water footprint values for soybean, corn and wheat crops for the period 2013-2018 in the Pergamino district, province of Buenos Aires, are 1,388 l<span style="white-space:nowrap;">&#8729;</span>kg<sup><span style="white-space:nowrap;">&#8722;</span>1</sup>, 693 l<span style="white-space:nowrap;">&#8729;</span>kg<sup><span style="white-space:nowrap;">&#8722;</span>1</sup> and 1,249 l<span style="white-space:nowrap;">&#8729;</span>kg<sup><span style="white-space:nowrap;">&#8722;</span>1</sup> respectively. These were lower than the global average reference values. The obtained results allowed future analysis advancing in the knowledge of the use of water productivity in grain production. 展开更多
关键词 Water Footprint Pergamino soybean maize wheat
下载PDF
Analyses of Protein and Oil of Maize Offsprings Plants Introducing Soybean DNA 被引量:8
5
作者 张慧英 田夏红 +1 位作者 冯锐 刘爱花 《Agricultural Science & Technology》 CAS 2008年第6期74-77,共4页
[Objective] The experiment was aimed to explore character variation between different families after DNA introduction and select variant plants with good stability. [Method] The method of pollen-tube-pathway was used ... [Objective] The experiment was aimed to explore character variation between different families after DNA introduction and select variant plants with good stability. [Method] The method of pollen-tube-pathway was used to introduce total DNA of soybean into normal maize inbred line 7313 for selecting generation by generation. When field characters of maize, grain colors, grain traits and panicle axis colors were stable, the crude protein, gliadin, glutelin and oil content of grains which were selected from variant strains were detected and compared. [Result] The grain crude protein, gliadin, glutelin and oil content of line 26h-4-3 were significantly different from these of control treatment. The increments of D3 and D4 generation were 10.34% and 26.70%, 6.58% and 6.28%, 15.09% and 70.34%, 55.82% and 51.52% respectively. All indexes of line 26h-3-1 were also higher than these of control treatment and the increments of D3 and D4 generation were 5.67% and 21.63%,1.91% and 2.31%, 10.85% and 62.27%,22.49% and 9.67%. [Conclusion] The crude protein, gliadin, glutelin and oil content of variant line 26h-4-3 and 26h-3-1 were stable, so variant line 26h-4-3 and 26h-3-1 were excellent variant strains which satisfied the requirement of high protein breeding. 展开更多
关键词 soybean DNA Method of pollen-tube-pathway maize INBRED line Protein OIL
下载PDF
Research and Breeding Application Progress of the Technique of Producing Double Haploid of Wheat by Wide Hybridization between Wheat and Maize 被引量:6
6
作者 丁明亮 赵红 +4 位作者 顾坚 李宏生 刘琨 杨木军 李绍祥 《Agricultural Science & Technology》 CAS 2017年第12期2202-2208,共7页
The technique of producing doublehaploid of wheat by distant hybridization between wheat and maize has characterized with better inducing effect, shorter in- ducing period, easy operation, and so on. At present, it is... The technique of producing doublehaploid of wheat by distant hybridization between wheat and maize has characterized with better inducing effect, shorter in- ducing period, easy operation, and so on. At present, it is the most efficient and has great potential of application in breeding of wheat. This article reviewed princi- ple and production process of the technique, research situation of the three key in- dicators of the technology(embryo rate, seedling rate and success rate of doubling)in recent years, and application of the technology in breeding, genetics, germplasm improvement of wheat. At last, both the achievements and the direction of further improvement and development of the technology in our program were discussed. 展开更多
关键词 wheat x maize Distant hybridization Double haploid(DH)
下载PDF
Effect of Maize Sowing Time and Density on Stem and Leaf Morphological Characters of Soybean in Relay-cropping System 被引量:2
7
作者 王竹 杨继芝 杨文钰 《Agricultural Science & Technology》 CAS 2015年第1期77-81,共5页
The effects of different maize sowing dates and densities on stem and leaf morphological characters and yield of soybean in wheat/maize/soybean relaycropping system were studied. The results showed that with early sow... The effects of different maize sowing dates and densities on stem and leaf morphological characters and yield of soybean in wheat/maize/soybean relaycropping system were studied. The results showed that with early sowing of maize, the maize yield was promoted, and maize was harvested in advance, which reduced the intergrowth period with soybean and guaranteed soybean's proper plant height, larger stem diameter and optimal values of LAI and SLW, so that soybean yield was also increased. The effects of different maize densities on the stem and leaf of soybean mainly were significant before the maize harvest, but soybean yield under high maize density was significantly lower than that under middle and low maize density, and the highest maize yield was under middle density. Based on soybean and maize comprehensive values, the optimum combination of this experiment was sowed on March 21 and planting density was 5.25×10^4 plant/hm^2. 展开更多
关键词 Relay-cropping maize soybean Morphology Yield
下载PDF
Inheritance and Sequence Homology Analysis of the Maize DNA Introgressed into the Wheat Doubled Haploid Plant Through Wheat×Maize Cross 被引量:3
8
作者 陈纯贤 孙敬三 朱立煌 《Acta Botanica Sinica》 CSCD 2000年第7期728-731,共4页
A maize (Zea mays L.) genome_specific repeated DNA sequence (clone MR64) has been transferred into one DH line of wheat through wheat (Triticum persicum Vav. ex Zhuk.) and maize cross. In the present study by RFLP ana... A maize (Zea mays L.) genome_specific repeated DNA sequence (clone MR64) has been transferred into one DH line of wheat through wheat (Triticum persicum Vav. ex Zhuk.) and maize cross. In the present study by RFLP analysis the authors proved that this DNA sequence could stably transmit into DH3 plants, the next generation derived from DH2 self_crossing. A similarity search in all DNA databases using BLASTN program showed that the DNA sequence of MR64 had as high as 93% identity to PREM_2 and 79% to Opie_2 in nucleotides. Both PREM_2 and Opie_2 are known as retrotransposons in maize genome, suggesting that MR64 likely is the partial sequence of a maize retrotransposon. Therefore, the results indicate that some retrotransposon might involve the DNA introgression from maize to wheat genome through wide fertilization. Stable inheritance of this maize genome_specific retrotransposon_like DNA in the wheat genome opens up the possibility of using retrotransposon as a new tool for gene tagging, function analysis, and insertional mutagenesis in wheat genome. 展开更多
关键词 wheat maize wide crosses genetic transmission RETROTRANSPOSON
下载PDF
High-efficiency Planting Techniques of Five Crops a Year for Fresh Edible "Faba Bean/Spring Mazie+Soybean-Autumn Maize/Autumn Soybean"
9
作者 葛红 汪凯华 +4 位作者 王学军 陈满峰 缪亚梅 顾春燕 单志良 《Agricultural Science & Technology》 CAS 2016年第4期833-837,共5页
The high-efficiency planting mode for five crops a year of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was introduced, and its yield and economic benefits were compared with the planti... The high-efficiency planting mode for five crops a year of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was introduced, and its yield and economic benefits were compared with the planting mode of three crops a year of "faba bean-spring maize/red bean". The results showed that the planting method for fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" was much easier to operate with the input-output ratio of about185.6%, and its yield and economic benefits were 2.09 and 1.83 times of that of the planting mode for three crops a year, significantly improving the agricultural yield and income of farmers. In addition, the cropping index of the planting mode for fresh edible fresh edible "faba bean/spring maize +soybean-autumn maize/autumn soybean" reached up to 350%, and planting faba bean once a year and soybean twice a year could make the biological fixation amount of nitrogen increase 350-450kg/m^2, which equaled to up to 700 kg/m^2 of urea, showing significant ecological and social benefits. Based on the comparison results, the high-yield culture techniques of the planting mode of fresh edible "faba bean/spring maize+soybean-autumn maize/autumn soybean" were summarized. 展开更多
关键词 Fresh edible faba bean Fresh edible maize Fresh edible soybean Five crops a year High-efficiency planting mode
下载PDF
Genetic Analysis of Embryo Production Frequency in Wheat × Maize Cross
10
作者 刘琨 宁波 +4 位作者 李宏生 李绍祥 顾坚 赵红 杨木军 《Agricultural Science & Technology》 CAS 2015年第9期1869-1872,共4页
A DH population derived from C49S-87/01Y1-1069 was used to study the inheritance of wheat haploid embryo production frequency(EPF) in wheat × maize cross with the mixed major gene and polygene inheritance model... A DH population derived from C49S-87/01Y1-1069 was used to study the inheritance of wheat haploid embryo production frequency(EPF) in wheat × maize cross with the mixed major gene and polygene inheritance model of quantitative traits. The results showed that the EPF of wheat × maize cross was controlled by two dominant epistatic genes and polygene with gene effects of 1.95 for the first major gene, 6.69 for the second one and 2.80 for the polygene. The inheritability of major genes was as high as 72.09%, suggesting that the differences in EPF among wheat materials were mainly influenced by genotype. However, non-genetic factors were still important, especially for wheat materials with low EPF. 展开更多
关键词 wheat × maize cross Haploid embryo production frequency Double Haploid population Mixed major gene and polygene inheritance model
下载PDF
Effects of Intercropping Patterns on Dry Matter Accumulation and Transportation of Maize(Zea mays L.) and Soybean[Glycine max(L.) Merrill] 被引量:3
11
作者 杨升辉 邱家训 +4 位作者 徐长帅 李洪杰 唐汝友 王素阁 李强 《Agricultural Science & Technology》 CAS 2013年第11期1545-1549,共5页
[Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 a... [Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 and Luhuang-1 were used as the testing breeds to study the effects of intercropping patterns on dry matter accumulation and transportation of maize and soybean in Huang-huai-hai. [Results] For maize, the dry matter accumulation amounts per hectare of intercropping was significant higher than that of the monoculture patterns, especial y after silking, when it reached extremely level; while for soybean, the dry matter accumulation amounts before flowering and after flowering of monocropping were al significantly higher than that of the intercropping patterns. For both maize and soybean, the transfer amounts of monocropping were al significantly or extremely significantly higher than that of intercropping; and the transfer ratio of maize intercropping was 0.59% higher than that of maize monocropping, while for soybean, it was 4.74% higher. Fitted dry matter accumulation with Logistic equation, it showed that the difference in maximum dry matter accumulation rate between maize monocropping and intercropping reached significant level, while for soybean, the maximum dry matter accumulation rate and its appearance time as wel as duration time between intercropping and monocropping were al reached significant level. The total land equivalent ratio of intercropping was 1.30. From yield and output value, the total yield of intercropping were 10.97 t/hm2, 0.64% and 326.85% higher than monocropping of maize and soy-bean, respectively. The total output value of intercropping was 25 796.23 yuan/hm2, respectively 12.67% and 104.68% higher than of maize and soybean monocropping. [Conclusion] The study lays a basis for improving grain yield and economic benefits. 展开更多
关键词 maize soybean INTERCROPPING Dry matter accumulation and transportation Yield
下载PDF
Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability 被引量:50
12
作者 DU Jun-bo HAN Tian-fu +8 位作者 GAI Jun-yi YONG Tai-wen SUN Xin WANG Xiao-chun YANG Feng LIU Jiang SHU Kai LIU Wei-guo YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期747-754,共8页
Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogic... Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants. The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips. Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2. Annually alternative rotation of the adjacent maize-and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles. Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability. 展开更多
关键词 maize soybean strip intercropping high production agricultural sustainability
下载PDF
Allelopathy of decomposed maize straw products on three soilborn diseases of wheat and the analysis by GC-MS 被引量:23
13
作者 QI Yong-zhi ZHEN Wen-chao LI Hai-yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第1期88-97,共10页
In northern China, the soil-born diseases of wheat have been getting more and more serious under a new farming system that returns maize straw to the field. In order to investigate the allelopathy of the decomposed ma... In northern China, the soil-born diseases of wheat have been getting more and more serious under a new farming system that returns maize straw to the field. In order to investigate the allelopathy of the decomposed maize straw products on three soil-born diseases of wheat, culture dish and pot experiments were conducted and the compounds in the products were identified by gas chromatography-mass spectrometry (GC-MS). Culture dish experiments showed that the mycelial growth, sclerotia formation amount and total weight of Rhizoctonia cerealis were promoted at concentrations of 0.03, 0.06 and 0.12 g mL-1 and inhibited at concentration of 0.48 g mL-1 of the decomposed products. No significant effects were found of the product concentrations on average weight of the sclerotia. Mycelial growth of Gaeumannomyces graminis was promoted at almost all concentrations except the highest one. Mycelial growth and spore germination of Bipolaris sorokiniana were significantly inhibited by all concentrations of the decomposed products, with enhanced inhibition effects along with the increased concentrations. The length, number and dry weight of roots together with the root superoxide dismutase activity were promoted by the lowest concentration (0.03 g mL-1), with a synthetic effect index of 0.012, and inhibited by other concentrations. The ion leakage of roots was increased and the root peroxidase activity of roots was lowered by all the treatments. Pot experiments revealed that occurrence of the sharp eyespot was reduced by 0.03 and 0.06 g mL-1 of decomposed products after irrigation. However, the incidence rates and disease indexes were significantly increased by 0.12, 0.24 and 0.48 g mL-1 of decomposed products. The results indicated that incidence rates and disease indexes of the take-all were significantly promoted after being irrigated with the decomposed products, while occurrences of the common rot didn't change, significantly. GC-MS results showed that the compounds of the decomposed products included organic acids, esters, hydrocarbons, amides and aldehydes, with the proportions 25.26, 24.01, 17.22, 14.39 and 7.73%, respectively. Further analysis investigated that the allelochemicals identified in straw decomposed products contained p-hydroxybenzoic acid (9.21%), dibutyl phthalate (6.94%), 3-phenyl-2-acrylic (5.06%), 4-hydroxy-3,5-dimethoxybenzoic acid (2.26%), hexanoic acid (1.73%), 8-octadecenoic acid (1.06%), 3-(4-hydroxy-3-methoxy-phenyl)-2-propenoic acid (1.04%), 4-hydroxy-3-methoxy-benzoic acid (0.94%) and salicylic acid (0.94%). 展开更多
关键词 wheat soil-born disease maize straw decomposed products ALLELOPATHY GC-MS
下载PDF
Trends of Yield and Soil Fertility in a Long-Term Wheat-Maize System 被引量:27
14
作者 YANG Xue-yun SUN Ben-hua ZHANG Shu-lan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第2期402-414,共13页
The sustainability of the wheat-maize rotation is important to China's food security. Intensive cropping without recycling crop residues or other organic inputs results in the loss of soil organic matter (SOM) and ... The sustainability of the wheat-maize rotation is important to China's food security. Intensive cropping without recycling crop residues or other organic inputs results in the loss of soil organic matter (SOM) and nutrients, and is assumed to be non- sustainable. We evaluated the effects of nine different treatments on yields, nitrogen use efficiency, P and K balances, and soil fertility in a wheat-maize rotation system (1991-2010) on silt clay loam in Shaanxi, China. The treatments involved the application of recommended dose of nitrogen (N), nitrogen and phosphorus (NP), nitrogen and potassium (NK), phosphorus and potassium (PK), combined NPK, wheat or maize straw (S) with NPK (SNPK), or dairy manure (M) with NPK (M1NPK and M2NPK), along with an un-treated control treatment (CK). The mean yields of wheat and maize ranged from 992 and 2 235 kg ha-1 under CK to 5 962 and 6 894 kg ha-1 under M2NPK treatment, respectively. Treatments in which either N or P was omitted (N, NK and PK) gave significantly lower crop yields than those in which both were applied. The crop yields obtained under NP, NPK and SNPK treatments were statistically identical, as were those obtained under SNPK and MNPK. However, M2NPK gave a significant higher wheat yield than NP, and MNPK gave significant higher maize yield than both NP and NPK. Wheat yields increased significantly (by 86 to 155 kg ha-1 yr-1) in treatments where NP was applied, but maize yields did not. In general, the nitrogen use efficiency of wheat was the highest under the NP and NPK treatments; for maize, it was the highest under MNPK treatment. The P balance was highly positive under MNPK treatment, increasing by 136 to 213 kg ha-1 annually. While the K balance was negative in most treatments, ranging from 31 to 217 kg ha^-1 yr^-1, levels of soil available K remained unchanged or increased over the 20 yr. SOM levels increased significantly in all treatments. Overall, the results indicated that combinations of organic manure and inorganic nitrogen, or retuming straw with NP is likely to improve soil fertility, increasing the yields achievable with wheat-maize system in a way which is environmentally and agronomically beneficial on the tested soil. 展开更多
关键词 wheat maize nitrogen use efficiency P balance K balance soil organic matter
下载PDF
Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China 被引量:14
15
作者 LIU Xiu-wei Til Feike +3 位作者 CHEN Su-ying SHAO Li-wei SUN Hong-yong ZHANG Xi-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第12期2886-2898,共13页
In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to ... In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to realize high crop productivity. Using the vast water resources of the saline upper aquifer for irrigation during WW jointing stage, may help to bridge the peak of dry season and relieve the tight water situation in the region. A field experiment was conducted during 2009-2012 to investigate the effects of saline irrigation during WW jointing stage on soil salt accumulation and productivity of WW and SM. The experiment treatments comprised no irrigation (T1), fresh water irrigation (T2), slightly saline water irrigation (T3:2.8 dS m-l), and strongly saline water irrigation (T4:8.2 dS m-1) at WW jointing stage. With regard to WW yields and aggregated annual WW-SM yields, clear benefits of saline water irrigation (T3 & T4) compared to no irrigation (T1), as well as insignificant yield losses compared to fresh water irrigation (T2) occurred in all three experiment years. However, the increased soil salinity in eady SM season in consequence of saline irrigation exerted a negative effect on SM photosynthesis and final yield in two of three experiment years. To avoid the negative aftereffects of saline irrigation, sufficient fresh water irrigation during SM sowing phase (i.e., increase from 60 to 90 mm) is recommended to guarantee good growth conditions during the sensitive early growing period of SM. The risk of long-term accumulation of salts as a result of saline irrigation during the peak of dry season is considered low, due to deep leaching of salts during regularly occurring wet years, as demonstrated in the 2012 experiment year. Thus, applying saline water irrigation at jointing stage of WW and fresh water at sowing of SM is most promising to realize high yield and fresh irrigation water saving. 展开更多
关键词 winter wheat summer maize soil salinity saline water irrigation salt balance
下载PDF
Water consumption in summer maize and winter wheat cropping system based on SEBAL model in Huang-Huai-Hai Plain, China 被引量:12
16
作者 YANG Jian-ying MEI Xu-rong +4 位作者 HUO Zhi-guo YAN Chang-rong JU Hui ZHAO Feng-hua LIU Qin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第10期2065-2076,共12页
Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model(SEBAL) and crop information... Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model(SEBAL) and crop information for assessment of regional crop(summer maize and winter wheat) actual evapotranspiration(ET a) in Huang-Huai-Hai(3H) Plain, China. The average seasonal ET a of summer maize and winter wheat were 354.8 and 521.5 mm respectively in 3H Plain. A high-ET a belt of summer maize occurs in piedmont plain, while a low ET a area was found in the hill-irrigable land and dry land area. For winter wheat, a high-ET a area was located in the middle part of 3H Plain, including low plain-hydropenia irrigable land and dry land, hill-irrigable land and dry land, and basin-irrigable land and dry land. Spatial analysis demonstrated a linear relationship between crop ET a, normalized difference vegetation index(NDVI), and the land surface temperature(LST). A stronger relationship between ET a and NDVI was found in the metaphase and last phase than other crop growing phase, as indicated by higher correlation coefficient values. Additionally, higher correlation coefficients were detected between ET a and LST than that between ET a and NDVI, and this significant relationship ran through the entire crop growing season. ET a in the summer maize growing season showed a significant relationship with longitude, while ET a in the winter wheat growing season showed a significant relationship with latitude. The results of this study will serve as baseline information for water resources management of 3H Plain. 展开更多
关键词 ETA winter wheat summer maize SEBAL crop information Huang-Huai-Hai Plain
下载PDF
The Effects of Three Mineral Nitrogen Sources and Zinc on Maize and Wheat Straw Decomposition and Soil Organic Carbon 被引量:8
17
作者 Ogunniyi Jumoke Esther GUO Chun-hui +2 位作者 TIAN Xiao-hong LI Hong-yun ZHOU Yang-xue 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第12期2768-2777,共10页
The incorporation of straw in cultivated ifelds can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this s... The incorporation of straw in cultivated ifelds can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this study was to determine the effects of different nitrogen sources, with and without the application of zinc, on straw decomposition and soil quality. Soils were treated with three different nitrogen sources, with and without zinc: urea (CO(NH2)2), ammonium sulfate ((NH4)2SO4), and ammonium chloride (NH4Cl). The combined treatments were as follows:maize (M) and wheat (W) straw incorporated into urea-, ammonium sulfate-, or ammonium chloride-treated soil (U, S, and C, respectively) with and without zinc (Z) (MU, MUZ, WU, WUZ;MS, MSZ, WS, WSZ;MC, MCZ, WC, WCZ, respectively);straw with zinc only (MZ, WZ);straw with untreated soil (MS, WS);and soil-only or control conditions (NT). The experiment consisted of 17 treatments with four replications. Each pot contained 150 g soil and 1.125 g straw, had a moisture content of 80%of the ifeld capacity, and was incubated for 53 days at 25°C. The rates of CO2-C emission, cumulative CO2-C evolution, total CO2 production in the soils of different treatments were measured to infer decomposition rates. The total organic carbon (TOC), labile organic carbon (LOC), and soil microbial biomass in the soils of different treatments were measured to infer soil quality. All results were signiifcantly different (P〈0.05) with the exception of the labile organic carbon (LOC). The maize and wheat straw showed different patterns in CO2 evolution rates. For both straw types, Zn had a synergic effect with U, but an antagonistic effect with the other N sources as determined by the total CO2 produced. The MUZ treatment showed the highest decomposition rate and cumulative CO2 concentration (1 120.29 mg/pot), whereas the WACZ treatment had the lowest cumulative CO2 concentration (1 040.57 mg/pot). The addition of NH4Cl resulted in the highest total organic carbon (TOC) concentration (11.59 mg kg-1). The incorporation of wheat straw resulted in higher microbial biomass accumulation in soils relative to that of the maize straw application. The results demonstrate that mineral N sources can affect the ability of microorganisms to decompose straw, as well as the soil carbon concentrations. 展开更多
关键词 nitrogen sources ZINC carbon fractions straw mineralization wheat straw maize straw LOC
下载PDF
Effect of Nitrogen Management on Yield and Water Use Efficiency of Rainfed Wheat and Maize in Northwest China 被引量:26
18
作者 DANG Ting-Hui CAI Gui-Xin +2 位作者 GUO Sheng-Li HAO Ming-De L. K. HENG 《Pedosphere》 SCIE CAS CSCD 2006年第4期495-504,共10页
A field experiment with four treatments and four replicates in a randomized complete block design was conducted at the Changwu Experimental Station in Changwu County, Shaanxi Province, of Northwest China from 1998 to ... A field experiment with four treatments and four replicates in a randomized complete block design was conducted at the Changwu Experimental Station in Changwu County, Shaanxi Province, of Northwest China from 1998 to 2002. The local cropping sequence of wheat, wheat-beans, maize, and wheat over the 4-year period was adopted. A micro-plot study using ^15N-lahelled fertilizer was carried out to determine the fate of applied N fertilizer in the first year. When N fertilizer was applied wheat (years 1, 2 and 4) and maize (year 3) grain yield increased significantly (P 〈 0.05) (〉 30%), with no significant yield differences in normal rainfall years (Years 1, 2 and 3) for N application at the commonly application rate and at 2/3 of this rate. Grain yield of wheat varied greatly between years, mainly due to variation in annual rainfall. Results of ^15N studies on wheat showed that plants recovered 36.6%-38.4% of the N applied, the N remained in soll (0-40 cm) ranged from 29.2% to 33.6%, and unaccounted-for N was 29.5%-34.2%. The following crop (wheat) recovered 2.1%- 2.8% of the residual N from N applied to the previous wheat crop with recovery generally decreasing in the subsequent three crops (beans, maize and wheat). 展开更多
关键词 wheat maize ^15N studies water use efficiency YIELD
下载PDF
Evaluation of Pathway of Nitrogen Loss in Winter Wheat and Summer Maize Rotation System 被引量:9
19
作者 JU Xiao-tang, LIU Xue-jun, ZOU Guo-yuan, WANG Zhao-hui and ZHANG Fu-suo(Department of Plant Nutrition , China Agricultural University , Beijing 100094 ,P. R. China) 《Agricultural Sciences in China》 CAS CSCD 2002年第11期1224-1231,共8页
The nitrogen loss pathway in winter wheat and summer maize rotation system was studied based on field experimental data. The results showed that nitrogen recovery rate was significantly decreased with nitrogen fertili... The nitrogen loss pathway in winter wheat and summer maize rotation system was studied based on field experimental data. The results showed that nitrogen recovery rate was significantly decreased with nitrogen fertilization rate increased, while residual rate and losses rate had an increasing trend. Accumulated ammonia volatilization loss in winter wheat and summer maize rotation was 12. 8(N0), 22.0(N120), 33. 0(N240) and 64. 5 kg N ha-1 (N360) respectively and rate of ammonia volatilization loss was 3.8, 4.2 and 7.2% respectively while urea was mixed with 0 -10 cm soil or spread before irrigation. Denitrification loss with acetylene-soil core incubation method in winter wheat was lower than 1 kg N ha-1 and rate of denitrification loss was 0. 21 - 0. 26% or trace. Denitrification loss in summer maize was 1 - 14 kg N ha-1 and rate of denitrification loss was 1-5%. The total gaseous loss in winter wheat and summer maize rotation system was less than 10%, and the main nitrogen fertilizer loss way was leaching below 0 - 100 cm soil profile and accumulated in deeper soil. 展开更多
关键词 Winter wheat Summer maize Ammonia volatilization Denitrif ication Nitrate leaching
下载PDF
Suitability of the DNDC model to simulate yield production and nitrogen uptake for maize and soybean intercropping in the North China Plain 被引量:5
20
作者 ZHANG Yi-tao LIU Jian +5 位作者 WANG Hong-yuan LEI Qiu-liang LIU Hong-bin ZHAI Li-mei REN Tian-zhi ZHANG Ji-zong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第12期2790-2801,共12页
Intercropping is an important agronomic practice. However, assessment of intercropping systems using field experiments is often limited by time and cost. In this study, the suitability of using the DeNitrification DeC... Intercropping is an important agronomic practice. However, assessment of intercropping systems using field experiments is often limited by time and cost. In this study, the suitability of using the DeNitrification DeComposition(DNDC) model to simulate intercropping of maize(Zea mays L.) and soybean(Glycine max L.) and its aftereffect on the succeeding wheat(Triticum aestivum L.) crop was tested in the North China Plain. First, the model was calibrated and corroborated to simulate crop yield and nitrogen(N) uptake based on a field experiment with a typical double cropping system. With a wheat crop in winter, the experiment included five treatments in summer: maize monoculture, soybean monoculture, intercropping of maize and soybean with no N topdressing to maize(N0), intercropping of maize and soybean with 75 kg N ha–1topdressing to maize(N75), and intercropping of maize and soybean with 180 kg N ha–1topdressing to maize(N180). All treatments had 45 kg N ha–1as basal fertilizer. After calibration and corroboration, DNDC was used to simulate long-term(1955 to 2012) treatment effects on yield. Results showed that DNDC could stringently capture the yield and N uptake of the intercropping system under all N management scenarios, though it tended to underestimate wheat yield and N uptake under N0 and N75. Long-term simulation results showed that N75 led to the highest maize and soybean yields per unit planting area among all treatments, increasing maize yield by 59% and soybean yield by 24%, resulting in a land utilization rate 42% higher than monoculture. The results suggest a high potential to promote soybean production by intercropping soybean with maize in the North China Plain, which will help to meet the large national demand for soybean. 展开更多
关键词 maize intercropping with soybean DNDC topdressing N YIELD N uptake
下载PDF
上一页 1 2 104 下一页 到第
使用帮助 返回顶部