Since the early 1980 s, the multi-cropping index for rice has decreased significantly in main double-cropping rice area in China, which is the primary double-cropping rice(DCR) production area. This decline may bring ...Since the early 1980 s, the multi-cropping index for rice has decreased significantly in main double-cropping rice area in China, which is the primary double-cropping rice(DCR) production area. This decline may bring challenges to food security in China because rice is the staple food for more than 60% of the Chinese population. It has been generally recognized that rapidly rising labor costs due to economic growth and urbanization in China is the key driving force of the ‘double-to-single' rice cropping system adaption. However, not all provinces have shown a dramatic decline in DCR area, and labor costs alone cannot explain this difference. To elucidate the reasons for these inter-provincial distinctions and the dynamics of rice cropping system adaption, we evaluated the influencing factors using provincial panel data from 1980 to 2015. We also used household survey data for empirical analysis to explore the mechanisms driving differences in rice multi-cropping changes. Our results indicated that the eight provinces in the study can be divided into three spatial groups based on the extent of DCR area decline, the rapidly-declining marginal, core, and stable zones. Increasing labor cost due to rapid urbanization was the key driving force of rice cropping system adaption, but the land use dynamic vary hugely among different provinces. These differences between zones were due to the interaction between labor price and accumulated temperature conditions. Therefore, increasing labor costs had the greatest impact in Zhejiang, Anhui, and Hubei, where the accumulated temperature is relatively low and rice multi-cropping index declined dramaticly. However, labor costs had little impact in Guangdong and Guangxi. Differences in accumulated temperature conditions resulted in spatially different labor demands and pressure on households during the busy season. As a result, there have been different profits and rice multi-cropping changes between provinces and zones. Because of these spatial differences, regionally appropriate policies that provide appropriate subsidies for early rice in rapidly-declining marginal zone such as Zhejiang and Hubei should be implemented. In addition, agricultural mechanization and the number of agricultural workers have facilitated double-cropping; therefore, small machinery and agricultural infrastructure construction should be further supported.展开更多
于江西鄱阳、上高县,选用代表性晚粳稻品种(武运粳24、南粳44、镇稻11、常优1号、常优5号、甬优8号),在高产栽培条件下以当地代表性晚籼稻品种为对照,系统比较了粳、籼稻间产量、品质和效益的差异,初步阐明了双季晚粳生产力优势,并从温...于江西鄱阳、上高县,选用代表性晚粳稻品种(武运粳24、南粳44、镇稻11、常优1号、常优5号、甬优8号),在高产栽培条件下以当地代表性晚籼稻品种为对照,系统比较了粳、籼稻间产量、品质和效益的差异,初步阐明了双季晚粳生产力优势,并从温光利用、株型、光合物质生产等方面探讨了其优势形成的生态生理特征。结果表明,3年晚粳平均产量分别为9.6、8.3、9.9 t hm–2(2011年上高县甬优8号最高产量田块达10.6 t hm–2),极显著高于晚籼,而其产量高的主要原因是每穗粒数、结实率显著或极显著高于籼稻;晚粳加工品质、食味品质优于晚籼(晚粳出糙率、精米率、整精米率显著或极显著高;籽粒直链淀粉、蛋白质含量显著或极显著低,胶稠度显著或极显著长),外观品质逊于晚籼(粳稻的垩白率、垩白大小、垩白度均显著或极显著高于籼稻);晚粳效益高于晚籼(3年晚粳的纯收益分别为11 890.6、10 252.1、16 565.9元hm–2,分别高23.8%、23.6%、26.7%)。双季晚粳生产力优势形成的相关生理生态特征为,较籼稻全生育期特别是结实期明显延长,抽穗结实期较籼稻适应凉爽气候,增加对温光资源利用,能正常成熟;后期有较高光合生产能力,增大了群体光合物质生产积累量,源库协调性好,库容总充实量高;生育后期在偏低温气候下不早衰,维持较强根系和较大茎鞘强度,具有较强群体抗倒伏能力。展开更多
基金National Program on Key Basic Research Project(No.2015CB452706)
文摘Since the early 1980 s, the multi-cropping index for rice has decreased significantly in main double-cropping rice area in China, which is the primary double-cropping rice(DCR) production area. This decline may bring challenges to food security in China because rice is the staple food for more than 60% of the Chinese population. It has been generally recognized that rapidly rising labor costs due to economic growth and urbanization in China is the key driving force of the ‘double-to-single' rice cropping system adaption. However, not all provinces have shown a dramatic decline in DCR area, and labor costs alone cannot explain this difference. To elucidate the reasons for these inter-provincial distinctions and the dynamics of rice cropping system adaption, we evaluated the influencing factors using provincial panel data from 1980 to 2015. We also used household survey data for empirical analysis to explore the mechanisms driving differences in rice multi-cropping changes. Our results indicated that the eight provinces in the study can be divided into three spatial groups based on the extent of DCR area decline, the rapidly-declining marginal, core, and stable zones. Increasing labor cost due to rapid urbanization was the key driving force of rice cropping system adaption, but the land use dynamic vary hugely among different provinces. These differences between zones were due to the interaction between labor price and accumulated temperature conditions. Therefore, increasing labor costs had the greatest impact in Zhejiang, Anhui, and Hubei, where the accumulated temperature is relatively low and rice multi-cropping index declined dramaticly. However, labor costs had little impact in Guangdong and Guangxi. Differences in accumulated temperature conditions resulted in spatially different labor demands and pressure on households during the busy season. As a result, there have been different profits and rice multi-cropping changes between provinces and zones. Because of these spatial differences, regionally appropriate policies that provide appropriate subsidies for early rice in rapidly-declining marginal zone such as Zhejiang and Hubei should be implemented. In addition, agricultural mechanization and the number of agricultural workers have facilitated double-cropping; therefore, small machinery and agricultural infrastructure construction should be further supported.
文摘于江西鄱阳、上高县,选用代表性晚粳稻品种(武运粳24、南粳44、镇稻11、常优1号、常优5号、甬优8号),在高产栽培条件下以当地代表性晚籼稻品种为对照,系统比较了粳、籼稻间产量、品质和效益的差异,初步阐明了双季晚粳生产力优势,并从温光利用、株型、光合物质生产等方面探讨了其优势形成的生态生理特征。结果表明,3年晚粳平均产量分别为9.6、8.3、9.9 t hm–2(2011年上高县甬优8号最高产量田块达10.6 t hm–2),极显著高于晚籼,而其产量高的主要原因是每穗粒数、结实率显著或极显著高于籼稻;晚粳加工品质、食味品质优于晚籼(晚粳出糙率、精米率、整精米率显著或极显著高;籽粒直链淀粉、蛋白质含量显著或极显著低,胶稠度显著或极显著长),外观品质逊于晚籼(粳稻的垩白率、垩白大小、垩白度均显著或极显著高于籼稻);晚粳效益高于晚籼(3年晚粳的纯收益分别为11 890.6、10 252.1、16 565.9元hm–2,分别高23.8%、23.6%、26.7%)。双季晚粳生产力优势形成的相关生理生态特征为,较籼稻全生育期特别是结实期明显延长,抽穗结实期较籼稻适应凉爽气候,增加对温光资源利用,能正常成熟;后期有较高光合生产能力,增大了群体光合物质生产积累量,源库协调性好,库容总充实量高;生育后期在偏低温气候下不早衰,维持较强根系和较大茎鞘强度,具有较强群体抗倒伏能力。