期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An experimental study on the effects of friction modifiers on wheel-rail dynamic interactions with various angles of attack 被引量:1
1
作者 Zhen Yang Pan Zhang +1 位作者 Jan Moraal Zili Li 《Railway Engineering Science》 2022年第3期360-382,共23页
By modifying friction to the desired level,the application of friction modifiers(FMs)has been considered as a promising emerging tool in the railway engineering for increasing braking/traction force in poor adhesion c... By modifying friction to the desired level,the application of friction modifiers(FMs)has been considered as a promising emerging tool in the railway engineering for increasing braking/traction force in poor adhesion conditions and mitigating wheel/rail interface deterioration,energy consumption,vibration and noise.Understanding the effectiveness of FMs in wheel–rail dynamic interactions is crucial to their proper applications in practice,which has,however,not been well explained.This study experimentally investigates the effects of two types of top-of-rail FM,i.e.FM-A and FM-B,and their application dosages on wheel–rail dynamic interactions with a range of angles of attack(AoAs)using an innovative well-controlled V-track test rig.The tested FMs have been used to provide intermediate friction for wear and noise reduction.The effectiveness of the FMs is assessed in terms of the wheel–rail adhesion characteristics and friction rolling induced axle box acceleration(ABA).This study provides the following new insights into the study of FM:the applications of the tested FMs can both reduce the wheel–rail adhesion level and change the negative friction characteristic to positive;stick–slip can be generated in the V-Track and eliminated by FM-A but intensified by FM-B,depending on the dosage of the FMs applied;the negative friction characteristic is not a must for stick–slip;the increase in ABA with AoA is insignificant until stick–slip occurs and the ABA can thus be influenced by the applications of FM. 展开更多
关键词 Friction modifier V-track test rig ADHESION wheelrail dynamic interaction Angle of attack Axle box acceleration
下载PDF
State-of-Arts of Mechanics of Rolling Contact and Its Application to Analysis of the Interactions between Wheel and Rail
2
作者 金学松 金建明 《Journal of Modern Transportation》 1998年第1期26-40,共15页
A few typical models of theory on rolling contact of bodies are reviewed, and the advantages and disadvantages in the applications to the dynamics of railway vehicles and the wheel/rail r... A few typical models of theory on rolling contact of bodies are reviewed, and the advantages and disadvantages in the applications to the dynamics of railway vehicles and the wheel/rail rolling contact are discussed in detail in the present paper. 展开更多
关键词 rolling contact theoretical model railway vehicle dynamics wheel/rail interaction
下载PDF
Development of rail technology for high speed railway in China
3
作者 FengShou Liu Guang Yang +2 位作者 Zhaoyang Chen Yinhua Zhang Qingyue Zhou 《Railway Sciences》 2023年第4期431-446,共16页
Purpose–The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China,and point out the development direction of rail technology of high-speed railway.Desi... Purpose–The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China,and point out the development direction of rail technology of high-speed railway.Design/methodology/approach–This study reviews the evolution of high-speed rail standards in China,comparing their chemical composition,mechanical attributes and geometric specifications with EN standards.It delves into the status of rail production technology,shifts in key performance indicators and the quality characteristics of rails.The analysis further examines the interplay between wheels and rails,the implementation of grinding technology and the techniques for inspecting rail service conditions.It encapsulates the salient features of rail operation and maintenance within the high-speed railway ecosystem.The paper concludes with an insightful prognosis of high-speed railway technology development in China.Findings–The rail standards of high-speed railway in China are scientific and advanced,highly operational and in line with international standards.The quality and performance of rail in China have reached the world’s advanced level.The 60N profile guarantees the operation quality of wheel–rail interaction effectively.The rail grinding technology system scientifically guarantees the long-term good service performance of the rail.The rail service state detection technology is scientific and efficient.The rail technology will take“more intelligent”and“higher speed”as the development direction to meet the future needs of high-speed railway in China.Originality/value–The development direction of rail technology for high-speed railway in China is defined,which will promote the continuous innovation and breakthrough of rail technology. 展开更多
关键词 High speed railway rail wheelrail interaction Intelligent operation and maintenance
下载PDF
ExperimentalVerificationofaDetailedVehicle┐TrackVerticalInteractionModel
4
作者 Zhai Wanming Cai Chengbiao Academy of Engineering Sciences, Southwest Jiaotong University, Chengdu 610031, China 《Journal of Modern Transportation》 1996年第1期24-31,共8页
A theoretical model has been developed to investigate vertical dynamic interactions between railway vehicles and tracks. Wheel rail forces and dynamic responses of vehicle and track components can be simulated with... A theoretical model has been developed to investigate vertical dynamic interactions between railway vehicles and tracks. Wheel rail forces and dynamic responses of vehicle and track components can be simulated with the model. The model has been applied to the study of high speed and heavy haul railway dynamic problems. In order to verify the model completely, a full scale field experiment was performed on the Chinese Datong Qinhuangdao railway. Accelerations of rail, sleeper and ballast were measured and compared with the simulated results both in time domain and in frequency domain. 展开更多
关键词 railway vehicle TRACK wheel rail interaction MODEL VERIFICATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部