期刊文献+
共找到2,660篇文章
< 1 2 133 >
每页显示 20 50 100
Wheel-rail contact model for railway vehicle-structure interaction applications:development and validation 被引量:1
1
作者 P.A.Montenegro R.Calçada 《Railway Engineering Science》 2023年第3期181-206,共26页
An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rai... An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rail in the concave region of the thread-flange transition is implemented in a simplified way.After presenting the enhanced formulation,the model is validated with two numerical applications(namely,the Manchester Benchmarks and a hunting stability problem of a sus-pended wheelset),and one experimental test performed in a test rig from the Railway Technical Research Institute(RTRI)in Japan.Given its finite element(FE)nature,and contrary to most of the vehicle multibody dynamic commercial software that cannot account for the infrastructure flexibility,the proposed VSI model can be easily used in the study of train-bridge systems with any degree of complexity.The validation presented in this work proves the accuracy of the proposed model,making it a suitable tool for dealing with different railway dynamic applications,such as the study of bridge dynamics,train running safety under different scenarios(namely,earthquakes and crosswinds,among others),and passenger riding comfort. 展开更多
关键词 Vehicle-structure interaction wheel-rail contact Manchester Benchmarks Thread-flange transition Dynamic analysis model validation
下载PDF
Thermal-contact capacity of one-dimensional attractive Gaudin-Yang model
2
作者 张小敏 程颂 陈洋洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期231-235,共5页
Tan's contact C is an important quantity measuring the two-body correlations at short distances in a dilute system.Here we make use of the technique of exactly solved models to study the thermal-contact capacity K... Tan's contact C is an important quantity measuring the two-body correlations at short distances in a dilute system.Here we make use of the technique of exactly solved models to study the thermal-contact capacity K_(T),i.e.,the derivative of C with respect to temperature in the attractive Gaudin-Yang model.It is found that K_(T) is useful in identifying the low temperature phase diagram,and using the obtained analytical expression of K_(T),we study its critical behavior and the scaling law.Especially,we show K_(T) versus temperature and thus the non-monotonic tendency of C in a tiny interval,for both spin-balanced and imbalanced phases.Such a phenomenon is merely observed in multi-component systems such as SU(2)Fermi gases and spinor bosons,indicating the crossover from the Tomonaga-Luttinger liquid to the spin-coherent liquid. 展开更多
关键词 Tan's contact Gaudin-Yang model Bethe ansatz
下载PDF
Calculation of high-speed abrasion forces for ceramic coatings based on the Hertzian contact model
3
作者 裴祥忠 丁坤英 《China Welding》 CAS 2024年第1期52-59,共8页
Aero engine seal coatings can effectively improve the air tightness of aircraft engines and increase fuel efficiency.However,due to the frictional forces between the blades and the coating,the coating often flakes off... Aero engine seal coatings can effectively improve the air tightness of aircraft engines and increase fuel efficiency.However,due to the frictional forces between the blades and the coating,the coating often flakes off,resulting in damage to the blades and causing eco-nomic losses.Therefore,it is necessary to analyze the friction between the blades and the coating.In this paper,three ceramic-based high-temperature seal coatings with different polyphenylene ester contents and a pure Yttria-stabilised zirconia coating were prepared by atmo-spheric plasma spraying(APS).The hardness and modulus of elasticity of the coated surfaces were obtained by hardness and modulus of elasticity tests,and the coatings were subjected to high-speed touch abrasion tests.The Hertzian contact model was used to calculate the maximum normal contact load on the coating during the process.The test values were compared with the theoretical values and it was found that the calculated values were always greater than the test values.In order to make the Hertzian contact model more accurate in calculating the touching and abrasion forces,the contact coefficients in the Hertzian contact model were optimized.Substituting the optimized coeffi-cients into the Hertzian contact model,the results show that the calculated results after optimizing the coefficients are much closer to the test values,with deviations from the test values ranging from 1%to 38%. 展开更多
关键词 sealing coating atmospheric plasma spraying high-speed collision and wear Hertzian contact model optimization coefficient
下载PDF
Gaps,challenges and possible solution for prediction of wheel-rail rolling contact fatigue crack initiation
4
作者 Shuyue Zhang Qiyue Liu +4 位作者 Maksym Spiryagin Qing Wu Haohao Ding Zefeng Wen Wenjian Wang 《Railway Engineering Science》 2023年第3期207-232,共26页
The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This p... The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This paper reviews the existing approaches to predict RCF crack initiation.The crack initiation region is predicted by the shakedown map.By combining the shakedown map with various initiation criteria and the critical plane method,the crack initiation life is calculated.The classification,methodologies,theories and applications of these approaches are included in this paper.The advantages and limitations of these methods are analyzed to provide recommendation for RCF crack initiation prediction.This review highlights that wheel/rail dynamic characteristic,complex working conditions,surface defects and wear all affect the RCF crack initiation.The optimal selection of criteria is essential in the crack initiation prediction.Based on the research gap regarding the challenging process of crack initiation prediction detailed in this review,a proposed prediction process of RCF crack initiation is proposed to achieve a more accurate result. 展开更多
关键词 RCF Crack initiation prediction Shakedown map CRITERIA wheel-rail contact
下载PDF
Contact Angle Prediction Model for Underwater Oleophobic Surfaces Based on Multifractal Theory
5
作者 Jiang Huayi You Yanzhen +4 位作者 Hu Juan Tian Dongmei Qi Hongyuan Sun Nana Liu Mei 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期37-48,共12页
Traditional microstructure scale parameters have difficulty describing the structure and distribution of a roughmaterial’s surface morphology comprehensively and quantitatively. This study constructs hydrophilic and ... Traditional microstructure scale parameters have difficulty describing the structure and distribution of a roughmaterial’s surface morphology comprehensively and quantitatively. This study constructs hydrophilic and underwateroleophobic surfaces based on polyvinylidene fluoride (PVDF) using a chemical modification method, and the fractaldimension and multifractal spectrum are used to quantitatively characterize the microscopic morphology. A new contactangle prediction model for underwater oleophobic surfaces is established. The results show that the fractal dimension ofthe PVDF surface first increases and then decreases with the reaction time. The uniformity characterized by the multifractalspectrum was generally consistent with scanning electron microscope observations. The contact angle of water droplets onthe PVDF surface is negatively correlated with the fractal dimension, and oil droplets in water are positively correlated.When the fractal dimension is 2.0975, the new contact angle prediction model has higher prediction accuracy. Themaximum and minimum relative deviations of the contact angle between the theoretical and measured data are 18.20%and 0.72%, respectively. For water ring transportation, the larger the fractal dimension and spectral width of the materialsurface, the smaller the absolute value of the spectral difference, the stronger the hydrophilic and oleophobic properties, andthe better the water ring transportation stability. 展开更多
关键词 contact angle hydrophilic-oleophobic surface polyvinylidene fluoride MULTIFRACTAL prediction model
下载PDF
Numerical Stability and Accuracy of Contact Angle Schemes in Pseudopotential Lattice Boltzmann Model for Simulating Static Wetting and Dynamic Wetting
6
作者 Dongmin Wang Gaoshuai Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期299-318,共20页
There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity sch... There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity scheme(IVD scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the fluid layer density above the wall(MPB-C scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the weighted average density of surrounding fluid nodes(MPB-W scheme)and the geometric formulation scheme(GF scheme).But the numerical stability and accuracy of the schemes for wetting simulation remain unclear in the past.In this paper,the numerical stability and accuracy of these schemes are clarified for the first time,by applying the five widely used contact angle schemes to simulate a two-dimensional(2D)sessile droplet on wall and capillary imbibition in a 2D channel as the examples of static wetting and dynamic wetting simulations respectively.(i)It is shown that the simulated contact angles by the GF scheme are consistent at different density ratios for the same prescribed contact angle,but the simulated contact angles by the PB scheme,IVD scheme,MPB-C scheme and MPB-W scheme change with density ratios for the same fluid-solid interaction strength.The PB scheme is found to be the most unstable scheme for simulating static wetting at increased density ratios.(ii)Although the spurious velocity increases with the increased liquid/vapor density ratio for all the contact angle schemes,the magnitude of the spurious velocity in the PB scheme,IVD scheme and GF scheme are smaller than that in the MPB-C scheme and MPB-W scheme.(iii)The fluid density variation near the wall in the PB scheme is the most significant,and the variation can be diminished in the IVD scheme,MPB-C scheme andMPBWscheme.The variation totally disappeared in the GF scheme.(iv)For the simulation of capillary imbibition,the MPB-C scheme,MPB-Wscheme and GF scheme simulate the dynamics of the liquid-vapor interface well,with the GF scheme being the most accurate.The accuracy of the IVD scheme is low at a small contact angle(44 degrees)but gets high at a large contact angle(60 degrees).However,the PB scheme is the most inaccurate in simulating the dynamics of the liquid-vapor interface.As a whole,it is most suggested to apply the GF scheme to simulate static wetting or dynamic wetting,while it is the least suggested to use the PB scheme to simulate static wetting or dynamic wetting. 展开更多
关键词 Pseudopotential lattice Boltzmann model contact angle scheme static wetting dynamic wetting capillary imbibition
下载PDF
Influence of railway wheel tread damage on wheel-rail impact loads and the durability of wheelsets
7
作者 Michele Maglio Tore Vernersson +2 位作者 Jens C.O.Nielsen Anders Ekberg Elena Kabo 《Railway Engineering Science》 EI 2024年第1期20-35,共16页
Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the... Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage. 展开更多
关键词 Wheel tread damage Rolling contact fatigue cluster Field measurements Dynamic vehicle-track interaction wheel-rail impact load Wheelset durability
下载PDF
Heterogeneities of grain boundary contact for simulation of laboratoryscale mechanical behavior of granitic rocks
8
作者 Xiongyu Hu Marte Gutierrez Zhiwei Yan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2629-2644,共16页
From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics i... From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics in the context of the grain-based model(GBM)in the particle flow code(PFC)is the contact heterogeneities and the appropriate contact model to mimic the grain boundary behavior.Generally,the smooth joint(SJ)model and linear parallel bond(LPB)model are used to simulate the grain boundary behavior.However,the literature does not document the suitability of different models for specific problems.Another challenge in implementing GBM in PFC is that only a single bonding parameter is used at the grain boundaries.The aim of this study is to investigate the responses of a laboratory-scale specimen with SJ and LPB models,considering grain boundary heterogeneous and homogeneous contact parameters.Uniaxial and biaxial compression tests are performed to calibrate the response of Creighton granite.The stressestrain curves,volumetric dilation,inter-crack(crack in the grain boundary),and intra-crack(crack within the grain)development,and failure patterns associated with different contact models are examined.It was found that both the SJ and LPB models can reproduce the pre-peak behavior observed for a granitic rock type.However,the LPB model is unable to reproduce the post-peak behavior.Due to the large interlocking effect originating from the balls in contact and the ball size in the LPB model,local dilation is induced at the grain boundaries.This overestimates the volumetric dilation and residual shear strength.The LPB model tends to result in discontinuous inter-cracks and stress localization in the rock specimen,resulting in fine fragments at the rock surface during failure. 展开更多
关键词 Grain boundary contact Smooth joint(SJ)model Linear parallel bond(LPB)model contact heterogeneities Particle flow code(PFC) Granitic rock
下载PDF
Effect of contact materials on the transient characteristics of vacuum arc plasma and anode erosion
9
作者 Ze YANG Dongsheng CAI +1 位作者 Qi HUANG Lijun WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期170-180,共11页
In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-co... In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-consistent model. The simulation results predicted a constricted arc column and obvious anode phenomena in Cu–Cr alloy contacts than in W–Cu alloy contacts.This observation could be the reason for the concentrated anode erosion in Cu–Cr alloys. For the contacts made by pure tungsten(W) and W–Cu alloy, the anode temperature increased rapidly because of the low specific heat of W. However, the maximum energy flux from the arc column to the anode surface was lower than in other cases. The simulation results were compared with experimental results. 展开更多
关键词 vacuum arc MHD model anode erosion contact materials
下载PDF
Experiment and constitutive modelling of creep deformation in the frozen silt-concrete interface
10
作者 HE Fei LIU Qingquan +4 位作者 LEI Wanyu WANG Xu MAO Erqing LI Sheng CHEN Hangjie 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3172-3185,共14页
To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep character... To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions. 展开更多
关键词 Creep characteristics contact surface Frozen silt Constitutive model Freezing temperature
下载PDF
Research on the influence of flexible wheelset rotation effect on wheel rail contact force
11
作者 Lixia Sun Yuanwu Cai +2 位作者 Di Cheng Xiaoyi Hu Chunyang Zhou 《Railway Sciences》 2024年第3期367-387,共21页
Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different an... Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different analysis requirements and selecting appropriate models to analyzing the wheel rail interaction,it is crucial to understand the influence of wheelset flexibility on the wheel-rail dynamics under different speeds and track excitations condition.Design/methodology/approach-The wheel rail contact points solving method and vehicle dynamics equations considering wheelset flexibility in the trajectory body coordinate system were investigated in this paper.As for the wheel-rail contact forces,which is a particular force element in vehicle multibody system,a method for calculating the Jacobian matrix of the wheel-rail contact force is proposed to better couple the wheel-rail contact force calculation with the vehicle dynamics response calculation.Based on the flexible wheelset modeling approach in this paper,two vehicle dynamic models considering the wheelset as both elastic and rigid bodies are established,two kinds of track excitations,namely normal measured track irregularities and short-wave irregularities are used,wheel-rail geometric contact characteristic and wheel-rail contact forces in both time and frequency domains are compared with the two models in order to study the influence of flexible wheelset rotation effect on wheel rail contact force.Findings-Under normal track irregularity excitations,the amplitudes of vertical,longitudinal and lateral forces computed by the flexible wheelset model are smaller than those of the rigid wheelset model,and the virtual penetration and equivalent contact patch are also slightly smaller.For the flexible wheelset model,the wheel rail longitudinal and lateral creepages will also decrease.The higher the vehicle speed,the larger the differences in wheel-rail forces computed by the flexible and rigid wheelset model.Under track short-wave irregularity excitations,the vertical force amplitude computed by the flexible wheelset is also smaller than that of the rigid wheelset.However,unlike the excitation case of measured track irregularity,under short-wave excitations,for the speed within the range of 200 to 350 km/h,the difference in the amplitude of the vertical force between the flexible and rigid wheelset models gradually decreases as the speed increase.This is partly due to the contribution of wheelset's elastic vibration under short-wave excitations.For low-frequency wheel-rail force analysis problems at speeds of 350 km/h and above,as well as high-frequency wheel-rail interaction analysis problems under various speed conditions,the flexible wheelset model will give results agrees better with the reality.Originality/value-This study provides reference for the modeling method of the flexible wheelset and the coupling method of wheel-rail contact force to the vehicle multibody dynamics system.Furthermore,by comparative research,the influence of wheelset flexibility and rotation on wheel-rail dynamic behavior are obtained,which is useful to the application scope of rigid and flexible wheelset models. 展开更多
关键词 Flexible wheelset contact points calculation Rotational effects Elastic modes wheel-rail force Papertype Researchpaper
下载PDF
Modeling of Energy Processes in Wheel-Rail Contacts Operating under Influence of Periodic Discontinuous Forces
12
作者 Zdzislaw Trzaska 《Journal of Transportation Technologies》 2012年第2期129-143,共15页
In this paper we present new numerical simulation approaches for determining the energy processes under periodic conditions caused by time-discontinuous forces in the wheel-rail contacts. The main advantage of the pre... In this paper we present new numerical simulation approaches for determining the energy processes under periodic conditions caused by time-discontinuous forces in the wheel-rail contacts. The main advantage of the presented method is the total elimination of frequency analysis, which in effect introduces important simplifications in the identification of the effects in the contact. The second important feature is the fact that the method is based on the analysis of appropriate loops on the energy phase plane leading to an easy estimation of the rail strength through the evaluation of the loop’s area. That model based simulation in the applied dynamics relies on advanced methods for model setup, robust and efficient numerical solution techniques and powerful simulation tools for practical applications. Fundamental properties of contact displacements of the rail surface have been considered on the basis of the newly established method. The contact zone between railway wheels and the rail surfaces made of bulk materials is perceived as strong enough to resist the normal (vertical) forces introduced by heavy loads and the dynamic response induced by track and wheel irregularities. The analysis is carried out for a wheel running on an elastic rail rested on sleepers arranged on completely rigid foundation. The equations of displacement motion are established through the application of the Lagrange equations approach. The established model of the wheel-rail contact dynamics has been applied to that same roll plane but with taking into account a nonlinear characteristic of the sleeper with respect to the ground. Attention then is focused completely on the modeling of the energy absorbed by the rail. The applied method employs the energy state variables as time functions leading to determine the susceptibility of a given contact on the strength induced by the rail roll. 展开更多
关键词 wheel-rail contact ENERGY Process PERIODIC DISCONTINUOUS Force One-Period ENERGY ENERGY LOOP
下载PDF
Multi-Body Dynamics Modeling of Heavy Goods Vehicle-Rail Interaction
13
作者 Lili Liu Jianhua Liu Jihong Zuo 《Open Journal of Applied Sciences》 2024年第7期1715-1722,共8页
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes... Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling. 展开更多
关键词 Vehicle-Rail Coupling Dynamic modeling wheel-rail Interaction Forces
下载PDF
Fractal Prediction Model of Thermal Contact Conductance of Rough Surfaces 被引量:11
14
作者 JI Cuicui ZHU Hua JIANG Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期128-136,共9页
The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical mode... The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces. 展开更多
关键词 rough surface FRACTAL thermal contact conductance prediction model
下载PDF
Elastoplastic Contact Mechanics Model of Rough Surface Based on Fractal Theory 被引量:9
15
作者 YUAN Yuan GAN Li +1 位作者 LIU Kai YANG Xiaohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期207-215,共9页
Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a sin... Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a single asperity are scale dependent, with an increase in the contact load and contact area, a transition from elastic, elastoplastic to full plastic deformation takes place in this order. In considering the size distribution function, analytic expression between the total contact load and the real contact area on the contact surface is obtained. The elastic, elastoplastic and full plastic contact load are obtained by the critical elastic contact area of the biggest asperity and maximun contact area of a single asperity. The results show that a rough surface is firstly in elastic deformation. As the load increases, elastoplastic or full plastic deformation takes place. For constant characteristic length scale G, the slope of load-area relation is proportional to fractal dimension D. For constant fractal dimension D, the slope of load-area relation is inversely proportional to G. For constant D and G, the slope of load-area relation is inversely proportional to property of the material ~b, namely with the same load, the material of rough surface is softer, and the total contact area is larger. The contact mechanics model provides a foundation for study of the friction, wear and seal performance of rough surfaces. 展开更多
关键词 rough surfaces ASPERITIES fractal theory contact model
下载PDF
Modeling and Calculation of Impact Friction Caused by Corner Contact in Gear Transmission 被引量:9
16
作者 ZHOU Changjiang CHEN Siyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期958-964,共7页
Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechan... Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology. 展开更多
关键词 gear transmission corner contact oblique impact model impact friction frictional coefficient
下载PDF
Contact Analysis and Modeling of Standing Wave Linear Ultrasonic Motor 被引量:6
17
作者 时运来 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第6期1235-1242,共8页
A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration character... A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process. A modified friction models was used to analyze the contact problems. Firstly, the dynamic normal contact force, interface friction force, and steady-state characteristics were analyzed. Secondly, the influences of the contact layer material, the dynamic characteristics of the stator, and the pre-load on motor performance were simulated. Finally, to validate the contact model, a linear ultrasonic motor based on in-plane modes was used as an example. The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results. This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these types of motor. 展开更多
关键词 standing wave linear ultrasonic motor intermittent contact contact model
下载PDF
Influence of particle contact models on soil response of poorly graded sand during cavity expansion in discrete element simulation 被引量:3
18
作者 Yang Dong Behzad Fatahi +1 位作者 Hadi Khabbaz Henry Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第6期1154-1170,共17页
The discrete element method(DEM) has been extensively adopted to investigate many complex geotechnical related problems due to its capability to incorporate the discontinuous nature of granular materials. In particula... The discrete element method(DEM) has been extensively adopted to investigate many complex geotechnical related problems due to its capability to incorporate the discontinuous nature of granular materials. In particular, when simulating large deformations or distortion of soil(e.g. cavity expansion),DEM can be very effective as other numerical solutions may experience convergence problems. Cavity expansion theory has widespread applications in geotechnical engineering, particularly to the problems concerning in situ testing, pile installation and so forth. In addition, the behaviour of geomaterials in a macro-level is utterly determined by microscopic properties, highlighting the importance of contact models. Despite the fact that there are numerous contact models proposed to mimic the realistic behaviour of granular materials, there are lack of studies on the effects of these contact models on the soil response.Hence, in this study, a series of three-dimensional numerical simulations with different contact constitutive models was conducted to simulate the response of sandy soils during cylindrical cavity expansion. In this numerical investigation, three contact models, i.e. linear contact model, rolling resistance contact model,and Hertz contact model, are considered. It should be noted that the former two models are linear based models, providing linearly elastic and frictional plasticity behaviours, whereas the latter one consists of nonlinear formulation based on an approximation of the theory of Mindlin and Deresiewicz. To examine the effects of these contact models, several cylindrical cavities were created and expanded gradually from an initial radius of 0.055 m to a final radius of 0.1 m. The numerical predictions confirm that the calibrated contact models produced similar results regarding the variations of cavity pressure, radial stress, deviatoric stress, volumetric strain, as well as the soil radial displacement. However, the linear contact model may result in inaccurate predictions when highly angular soil particles are involved. In addition, considering the excessive soil displacement induced by the pile installation(i.e. cavity expansion), a minimum distance of11 a(a is the cavity radius) is recommend for practicing engineers to avoid the potential damages to the existing piles and adjacent structures. 展开更多
关键词 Discrete element method(DEM) Cavity expansion contact models Behaviour of geomaterials
下载PDF
CONVERGENCE RATE OF SOLUTIONS TO STRONG CONTACT DISCONTINUITY FOR THE ONE-DIMENSIONAL COMPRESSIBLE RADIATION HYDRODYNAMICS MODEL 被引量:2
19
作者 陈正争 柴晓娟 王文娟 《Acta Mathematica Scientia》 SCIE CSCD 2016年第1期265-282,共18页
This paper is concerned with a singular limit for the one-dimensional compress- ible radiation hydrodynamics model. The singular limit we consider corresponds to the physical problem of letting the Bouguer number infi... This paper is concerned with a singular limit for the one-dimensional compress- ible radiation hydrodynamics model. The singular limit we consider corresponds to the physical problem of letting the Bouguer number infinite while keeping the Boltzmann number constant. In the case when the corresponding Euler system admits a contact discontinuity wave, Wang and Xie (2011) [12] recently verified this singular limit and proved that the solution of the compressible radiation hydrodynamics model converges to the strong contact 1 discontinuity wave in the L∞-norm away from the discontinuity line at a rate of ε1/4, as the reciprocal of the Bouguer number tends to zero. In this paper, Wang and Xie's convergence rate is improved to ε7/8 by introducing a new a priori assumption and some refined energy estimates. Moreover, it is shown that the radiation flux q tends to zero in the L∞-norm away from the discontinuity line, at a convergence rate as the reciprocal of the Bouguer number tends to zero. 展开更多
关键词 radiation hydrodynamics model singular limit contact discontinuity conver-gence rate energy estimates
下载PDF
Determination of the Normal Contact Stiffness and Integration Time Step for the Finite Element Modeling of Bristle-Surface Interaction 被引量:4
20
作者 Libardo V.Vanegas-Useche Magd M.Abdel-Wahab Graham A.Parker 《Computers, Materials & Continua》 SCIE EI 2018年第7期169-184,共16页
In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITS... In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITSs are required.Moreover,the selection of a suitable value of Kn is a critical issue,as the impact behavior depends dramatically on this parameter.In this work,a number of experimental tests and finite element analyses have been performed in order to obtain an appropriate value of Kn for the interaction between a bristle of a gutter brush for road sweeping and a concrete surface.Furthermore,a suitable ITS is determined.The experiments consist of releasing a steel bristle that is placed vertically at a certain distance from a concrete surface and tracking the impact.Similarly,in the finite element analyses,a beam is modeled in free fall and impacting a surface;contact and target elements are attached to the beam and the surface,respectively.The results of the experiments and the modeling are integrated through the principle of conservation of energy,the principle of linear impulse and momentum,and Newton’s second law.The results demonstrate that,for the case studied,Kn and the impact time tend to be independent of the velocity just before impact and that Kn has a very large variation,as concrete is a composite material with a rough surface.Also,the ratio between the largest height of the bristle after impact and the initial height tends to be constant. 展开更多
关键词 BRUSH street sweeping finite element modeling contact mechanics
下载PDF
上一页 1 2 133 下一页 到第
使用帮助 返回顶部