The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots...Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots (AWMR) in rough terrain. A model and analysis of relationship among wheel slippage (S), rotation angle (0), sinkage (z) and wheel radius (r) are presented. It is found that wheel rotation angle, sinkage and radius have some influence on wheel slippage. A multi-objective optimization problem with slippage as utility function was formulated and solved in MATLAB. The results reveal the optimal values of wheel-terrain parameters required to achieve optimum slippage on dry sandy terrain. A method of slippage estimation for a five-wheeled mobile robot was presented through comparing the odometric measurements of the powered wheels with those of the fifth non-powered wheel. The experimental result shows that this method is feasible and can be used for online slippage estimation in a sandy terrain.展开更多
A robust unified controller was proposed for wheeled mobile robots that do not satisfy the ideal rolling without slipping constraint.Practical trajectory tracking and posture stabilization were achieved in a unified f...A robust unified controller was proposed for wheeled mobile robots that do not satisfy the ideal rolling without slipping constraint.Practical trajectory tracking and posture stabilization were achieved in a unified framework.The design procedure was based on the transverse function method and Lyapunov redesign technique.The Lie group was also introduced in the design.The left-invariance property of the nominal model was firstly explored with respect to the standard group operation of the Lie group SE(2).Then,a bounded transverse function was constructed,by which a corresponding smooth embedded submanifold was defined.With the aid of the group operation,a smooth control law was designed,which fulfills practical tracking/stabilization of the nominal system.An additional component was finally constructed to robustify the nominal control law with respect to the slipping disturbance by using the Lyapunov redesign technique.The design procedure can be easily extended to the robot system suffered from general unknown but bounded disturbances.Simulations were provided to demonstrate the effectiveness of the robust unified controller.展开更多
As unmanned electric wheeled mobile robots have been increasingly applied to high-speed operations in unknown environments,the wheel slip becomes a problem when the robot is either accelerating,decelerating,or turning...As unmanned electric wheeled mobile robots have been increasingly applied to high-speed operations in unknown environments,the wheel slip becomes a problem when the robot is either accelerating,decelerating,or turning at high speed.Ignoring the effect of wheel slip may cause the mobile robot to deviate from the desired path.In this paper a recently proposed method is implemented to estimate the surface conditions encountered by an unmanned wheeled mobile robot,without using extra sensors.The method is simple,economical and needs less processing power than for other methods.A reaction torque observer is used to obtain the rolling resistance torque and it is applied to a wheeled mobile robot to obtain the surface condition in real-time for each wheel.The slip information is observed by comparing the reaction torque of each wheel.The obtained slip information is then used to control the torque of both wheels using a torque controller.Wheel slip is minimized by controlling the torque of each wheel.Minimizing the slip improves the ability of the unmanned electric wheeled mobile robot to navigate in the desired path in an unknown environment,regardless of the nature of the surface.展开更多
A control strategy for real-time target tracking for wheeled mobile robots is presented.Using a modified Kalman filter for environment perception,a novel tracking control law derived from Lyapunov stability theory is ...A control strategy for real-time target tracking for wheeled mobile robots is presented.Using a modified Kalman filter for environment perception,a novel tracking control law derived from Lyapunov stability theory is introduced.Tuning of linear velocity and angular velocity with mechanical constraints is applied.The proposed control system can simultaneously solve the target trajectory prediction,real-time tracking,and posture regulation problems of a wheeled mobile robot.Experimental results illustrate the effectiveness of the proposed tracking control laws.展开更多
A geometric model was built to represent the position relation of a wheeled mobile robot relative to a pipe. The relationship between the deviation of falling off for the robot and the curvature of the pipe was formul...A geometric model was built to represent the position relation of a wheeled mobile robot relative to a pipe. The relationship between the deviation of falling off for the robot and the curvature of the pipe was formulated quantitatively. Based on the relationship, a mathematical model was derived and a fuzzy control algorithm for the robot was developed. Simulations were carried out to confirm the dynamic index and the validity of the mathematical model of the fuzzy control algorithm for seam tracking of pipe welding. Experiments for pipe welding with the mobile robot were also carried out to verify the algorithm, and the results showed that the seam has a good quality with a preferable appearance of weld.展开更多
The kinematics model of an omnidirectional wheeled mobile robot (WMR) platform with 3 castor wheels was built, which includes the actuated inverse solution and the sensed forward solution. Motion simulations verify ...The kinematics model of an omnidirectional wheeled mobile robot (WMR) platform with 3 castor wheels was built, which includes the actuated inverse solution and the sensed forward solution. Motion simulations verify the consistency between the actuated inverse solution and the sensed forward solution. Analysis results show that the WMR possesses 3 degrees of freedom, and its motion trajectory is a straight line. The "pushing" and "pulling" motion patterns of the WMR can be generated by using different wheel orientations. It can be used in the places where the space is limited.展开更多
This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm ha...This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm has been developed based on both the ant colony algorithm and a fuzzy system for real-time tuning of controller parameters. Simulations and experiments using a real robot have been addressed to demonstrate the success of the proposed controller and validate the theoretical analysis. Obtained results confirm that the proposed controller ensures robust performance in the presence of disturbances and parametric uncertainties without the need for adjustment of control law parameters by a trial and error method.展开更多
A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the...A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the locomotion architecture of mobile robot and the principle of proprioceptive sensors, the kinematics model of mobile robot was built to realize the relative localization. Considering that the research on dead reckoning of mobile robot was confined to the 2 dimensional planes, the locomotion of mobile robot in the 3 coordinate axis direction was thought over in order to estimate its pose on uneven terrain. Because the computing method in a plane is rather mature, the calculation in height direction is emphatically represented as a key issue. With experimental results obtained by simulation program and robot platform, the position of mobile robot can be reliably estimated and the localization precision can be effectively improved, so the effectiveness of this dead reckoning system is demonstrated.展开更多
Three main basic types of locomotion for a mobile robot were introduced and the advantages and disadvantages of a legged mobile robot, a wheeled mobile robot and an articulated mobile robot were also discussed. A new ...Three main basic types of locomotion for a mobile robot were introduced and the advantages and disadvantages of a legged mobile robot, a wheeled mobile robot and an articulated mobile robot were also discussed. A new type of leg wheeled mobile robot was introduced which combines the adaptability of legged robot with the stability of wheeled robot. On the basis of the structure of the wheels, the paper described the principle of the ice skater robot developed from Roller walker and ALDURO and its construction. The paper also established an inertia coordinate system and a wheel coordinate system, and analyzed the configuration or the posture and the related kinematic constraints of the robot according to some assumptions. Based on the motion principle, a logic based coordinated control system and corresponded flowchart were designed. At last, taking the ice skater robot as an example the paper expounded its application and the actual experiment proved its feasibility.展开更多
Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a ...Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a non-linear dynamics model. An adaptive tracking controller for the kinematic model of a nonhotonomic mobile robot with unknown parameters is also proposed. Using control Lyapunov function (CLF), the controller's global asymptotic stability has been proven. The adaptive trajectory tracking controller decreases the disturbance in the course of tracking control and enhances the real-time control characteristics. The simulation result indicated that the wheeled mobile robot tracking can be effectively controlled.展开更多
The complete dynamics model of a four-Mecanum-wheeled robot considering mass eccentricity and friction uncertainty is derived using the Lagrange’s equation. Then based on the dynamics model, a nonlinear stable adapti...The complete dynamics model of a four-Mecanum-wheeled robot considering mass eccentricity and friction uncertainty is derived using the Lagrange’s equation. Then based on the dynamics model, a nonlinear stable adaptive control law is derived using the backstepping method via Lyapunov stability theory. In order to compensate for the model uncertainty, a nonlinear damping term is included in the control law, and the parameter update law with σ-modification is considered for the uncertainty estimation. Computer simulations are conducted to illustrate the suggested control approach.展开更多
This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobilerobot path planning problem in a two-dimensional map with the presence ofconstraint...This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobilerobot path planning problem in a two-dimensional map with the presence ofconstraints. This approach gives the possibility to find the path for a wheelmobile robot considering some constraints during the robot movement inboth known and unknown environments. The feasible path is determinedbetween the start and goal positions by generating wave of points in alldirection towards the goal point with adhering to constraints. In simulation,the proposed method has been tested in several working environments withdifferent degrees of complexity. The results demonstrated that the proposedmethod is able to generate efficiently an optimal collision-free path. Moreover,the performance of the proposed method was compared with the A-star andlaser simulator (LS) algorithms in terms of path length, computational timeand path smoothness. The results revealed that the proposed method hasshortest path length, less computational time and the best smooth path. Asan average, GLS is faster than A∗ and LS by 7.8 and 5.5 times, respectivelyand presents a path shorter than A∗ and LS by 1.2 and 1.5 times. In orderto verify the performance of the developed method in dealing with constraints, an experimental study was carried out using a Wheeled Mobile Robot(WMR) platform in labs and roads. The experimental work investigates acomplete autonomous WMR path planning in the lab and road environmentsusing a live video streaming. Local maps were built using data from a live video streaming with real-time image processing to detect segments of theanalogous-road in lab or real-road environments. The study shows that theproposed method is able to generate shortest path and best smooth trajectoryfrom start to goal points in comparison with laser simulator.展开更多
The robot consists of a quadruped mechanism and two active dual-wheel casters possesses the advantages of wheeled and legged mechanism, and can quickly move on the relatively plane ground with the wheeled mechanism, a...The robot consists of a quadruped mechanism and two active dual-wheel casters possesses the advantages of wheeled and legged mechanism, and can quickly move on the relatively plane ground with the wheeled mechanism, and can walk on the extremely uneven terrain with the legged mechanism. The effectiveness of the motion design of the hybrid robot is iHustrated by simulation results.展开更多
An irmovative mobile robot that has reconfigurable loeomotion chassis and reconfigurable bionic wheels has been developed to meet the needs of different payload and different terrain. Several prototypes have been achi...An irmovative mobile robot that has reconfigurable loeomotion chassis and reconfigurable bionic wheels has been developed to meet the needs of different payload and different terrain. Several prototypes have been achieved by the recortfiguration. By modeling relative comparison coefficients, these prototypes are analyzed in terms of geometrical parameter of trafficability, static stability and maneuverability. The effects of reconfiguration on these indices of robot performance can be compared, i.e. the variable height of chassis h has the biggest effect, the variable length of chassis 1 is the second, then is the camber angle β and the caster angle α. Some principles for reconfiguration are proposed.展开更多
Considering the wheeled mobile robot(WMR)tracking problem with velocity saturation,we developed a data‐driven iterative learning double loop control method with constraints.First,the authors designed an outer loop co...Considering the wheeled mobile robot(WMR)tracking problem with velocity saturation,we developed a data‐driven iterative learning double loop control method with constraints.First,the authors designed an outer loop controller to provide virtual velocity for the inner loop according to the position and pose tracking error of the WMR kinematic model.Second,the authors employed dynamic linearisation to transform the dynamic model into an online data‐driven model along the iterative domain.Based on the measured input and output data of the dynamic model,the authors identified the parameters of the inner loop controller.The authors considered the velocity saturation constraints;we adjusted the output velocity of the WMR online,providing effective solutions to the problem of velocity saltation and the saturation constraint in the tracking process.Notably,the inner loop controller only uses the output data and input of the dynamic model,which not only enables the reliable control of WMR trajectory tracking,but also avoids the influence of inaccurate model identification processes on the tracking performance.The authors analysed the algorithm's convergence in theory,and the results show that the tracking errors of position,angle and velocity can converge to zero in the iterative domain.Finally,the authors used a simulation to demonstrate the effectiveness of the algorithm.展开更多
A supportive mobile robot for assisting the elderly is an emerging requirement mainly in countries like Japan where population ageing become relevant in near future.Falls related injuries are considered as a critical ...A supportive mobile robot for assisting the elderly is an emerging requirement mainly in countries like Japan where population ageing become relevant in near future.Falls related injuries are considered as a critical issue when taking into account the physical health of older people.A personal assistive robot with the capability of picking up and carrying objects for long/short distances can be used to overcome or lessen this problem.Here,we design and introduce a 3 D dynamic simulation of such an assistive robot to perform pick and place of objects through visual recognition.The robot consists of two major components;a robotic arm or manipulator to do the pick and place,and an omnidirectional wheeled robotic platform to support mobility.Both components are designed and operated according to their kinematics and dynamics and the controllers are integrated for the combined performance.The objective was to improve the accuracy of the robot at a considerably high speed.Designed mobile manipulator has been successfully tested and simulated with a stereo vision system to perform object recognition and tracking in a virtual environment resembling aroom of an elderly care.The tracking accuracy of the mobile manipulator at an average speed of 0.5 m/s is 90%and is well suited for the proposed application.展开更多
Environmental issues like pollution are major threats to human health.Many systems are developed to reduce pollution.In this paper,an optimal mobile robot design to reduce pollution in Green supply chain management sy...Environmental issues like pollution are major threats to human health.Many systems are developed to reduce pollution.In this paper,an optimal mobile robot design to reduce pollution in Green supply chain management system.Green supply chain management involves as similating environmentally and eco-nomically feasible solutions into the supply chain life-cycle.Smartness,advanced technologies,and advanced networks are becoming pillars of a sustainable supply chain management system.At the same time,there is much change happening in the logistics industry.They are moving towards a new logistics model.In the new model,robotic logistics has a vital role.The reasons for this change are the rapid growth of the e-commerce business and the shortage of workers.The advantages of using robotic logistics are reduction in human errors,faster delivery speed,better customer satisfaction,more safety for workers,and high workforce adaptability.A robot with rocker-bogie suspension is a six-wheeled mobile platform that has a distinctive potential to keep all wheels on the ground continuously.It has been designed to traverse rough and uneven terrain by distributing the load over its wheels equally.However,there is a limitation to achieving high-speed mobility against vertical barriers.In this research,an optimal design of product delivery wheeled robots for a sustainable supply chain system is proposed to ensure higher adaptability and maximum stability during climbing staircases.The design parameters of the proposed robot are optimized using Taguchi Method.The aim is to get a smooth trajectory of the robot’s center-of-mass.The proposed approach realizes a robot with much-improved stability which can climb over heights more than the size of the wheel(i.e.,3 times the radius of wheels).The results reveal that the modified rocker-bogie system not only increases the stair-climbing capability but also thwarts instability due to overturning of a wheel of the robot.展开更多
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金Project(60775060) supported by the National Natural Science Foundation of ChinaProject(F200801) supported by the Natural Science Foundation of Heilongjiang Province,China+1 种基金Project(200802171053,20102304110006) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2012RFXXG059) supported by Harbin Science and Technology Innovation Talents Special Fund,China
文摘Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots (AWMR) in rough terrain. A model and analysis of relationship among wheel slippage (S), rotation angle (0), sinkage (z) and wheel radius (r) are presented. It is found that wheel rotation angle, sinkage and radius have some influence on wheel slippage. A multi-objective optimization problem with slippage as utility function was formulated and solved in MATLAB. The results reveal the optimal values of wheel-terrain parameters required to achieve optimum slippage on dry sandy terrain. A method of slippage estimation for a five-wheeled mobile robot was presented through comparing the odometric measurements of the powered wheels with those of the fifth non-powered wheel. The experimental result shows that this method is feasible and can be used for online slippage estimation in a sandy terrain.
基金Project (60234030) supported by the National Natural Science Foundation of ChinaProject supported by the TRAPOYT of Ministry of Education of China
文摘A robust unified controller was proposed for wheeled mobile robots that do not satisfy the ideal rolling without slipping constraint.Practical trajectory tracking and posture stabilization were achieved in a unified framework.The design procedure was based on the transverse function method and Lyapunov redesign technique.The Lie group was also introduced in the design.The left-invariance property of the nominal model was firstly explored with respect to the standard group operation of the Lie group SE(2).Then,a bounded transverse function was constructed,by which a corresponding smooth embedded submanifold was defined.With the aid of the group operation,a smooth control law was designed,which fulfills practical tracking/stabilization of the nominal system.An additional component was finally constructed to robustify the nominal control law with respect to the slipping disturbance by using the Lyapunov redesign technique.The design procedure can be easily extended to the robot system suffered from general unknown but bounded disturbances.Simulations were provided to demonstrate the effectiveness of the robust unified controller.
文摘As unmanned electric wheeled mobile robots have been increasingly applied to high-speed operations in unknown environments,the wheel slip becomes a problem when the robot is either accelerating,decelerating,or turning at high speed.Ignoring the effect of wheel slip may cause the mobile robot to deviate from the desired path.In this paper a recently proposed method is implemented to estimate the surface conditions encountered by an unmanned wheeled mobile robot,without using extra sensors.The method is simple,economical and needs less processing power than for other methods.A reaction torque observer is used to obtain the rolling resistance torque and it is applied to a wheeled mobile robot to obtain the surface condition in real-time for each wheel.The slip information is observed by comparing the reaction torque of each wheel.The obtained slip information is then used to control the torque of both wheels using a torque controller.Wheel slip is minimized by controlling the torque of each wheel.Minimizing the slip improves the ability of the unmanned electric wheeled mobile robot to navigate in the desired path in an unknown environment,regardless of the nature of the surface.
文摘A control strategy for real-time target tracking for wheeled mobile robots is presented.Using a modified Kalman filter for environment perception,a novel tracking control law derived from Lyapunov stability theory is introduced.Tuning of linear velocity and angular velocity with mechanical constraints is applied.The proposed control system can simultaneously solve the target trajectory prediction,real-time tracking,and posture regulation problems of a wheeled mobile robot.Experimental results illustrate the effectiveness of the proposed tracking control laws.
基金This paper is supported by National Natural Science Foundation of China ( Grant No. 51275051 ), the innovation and improvement plan of Beijing Education Commission (Grant No. TJSHG201510017023 )
文摘A geometric model was built to represent the position relation of a wheeled mobile robot relative to a pipe. The relationship between the deviation of falling off for the robot and the curvature of the pipe was formulated quantitatively. Based on the relationship, a mathematical model was derived and a fuzzy control algorithm for the robot was developed. Simulations were carried out to confirm the dynamic index and the validity of the mathematical model of the fuzzy control algorithm for seam tracking of pipe welding. Experiments for pipe welding with the mobile robot were also carried out to verify the algorithm, and the results showed that the seam has a good quality with a preferable appearance of weld.
基金Project of Sichuan Province Key Disci-pline Construction for Automotive Engineering (No.SZD0410)
文摘The kinematics model of an omnidirectional wheeled mobile robot (WMR) platform with 3 castor wheels was built, which includes the actuated inverse solution and the sensed forward solution. Motion simulations verify the consistency between the actuated inverse solution and the sensed forward solution. Analysis results show that the WMR possesses 3 degrees of freedom, and its motion trajectory is a straight line. The "pushing" and "pulling" motion patterns of the WMR can be generated by using different wheel orientations. It can be used in the places where the space is limited.
文摘This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm has been developed based on both the ant colony algorithm and a fuzzy system for real-time tuning of controller parameters. Simulations and experiments using a real robot have been addressed to demonstrate the success of the proposed controller and validate the theoretical analysis. Obtained results confirm that the proposed controller ensures robust performance in the presence of disturbances and parametric uncertainties without the need for adjustment of control law parameters by a trial and error method.
基金Project(60234030) supported by the National Natural Science Foundation of China
文摘A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the locomotion architecture of mobile robot and the principle of proprioceptive sensors, the kinematics model of mobile robot was built to realize the relative localization. Considering that the research on dead reckoning of mobile robot was confined to the 2 dimensional planes, the locomotion of mobile robot in the 3 coordinate axis direction was thought over in order to estimate its pose on uneven terrain. Because the computing method in a plane is rather mature, the calculation in height direction is emphatically represented as a key issue. With experimental results obtained by simulation program and robot platform, the position of mobile robot can be reliably estimated and the localization precision can be effectively improved, so the effectiveness of this dead reckoning system is demonstrated.
文摘Three main basic types of locomotion for a mobile robot were introduced and the advantages and disadvantages of a legged mobile robot, a wheeled mobile robot and an articulated mobile robot were also discussed. A new type of leg wheeled mobile robot was introduced which combines the adaptability of legged robot with the stability of wheeled robot. On the basis of the structure of the wheels, the paper described the principle of the ice skater robot developed from Roller walker and ALDURO and its construction. The paper also established an inertia coordinate system and a wheel coordinate system, and analyzed the configuration or the posture and the related kinematic constraints of the robot according to some assumptions. Based on the motion principle, a logic based coordinated control system and corresponded flowchart were designed. At last, taking the ice skater robot as an example the paper expounded its application and the actual experiment proved its feasibility.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z245)the Program for Changjiang Scholars and Innovative Research Team in University ( No. IRT0423)the Fund for Foreign Scholars in University Research and Teaching Programs (No. B07018)
文摘Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a non-linear dynamics model. An adaptive tracking controller for the kinematic model of a nonhotonomic mobile robot with unknown parameters is also proposed. Using control Lyapunov function (CLF), the controller's global asymptotic stability has been proven. The adaptive trajectory tracking controller decreases the disturbance in the course of tracking control and enhances the real-time control characteristics. The simulation result indicated that the wheeled mobile robot tracking can be effectively controlled.
文摘The complete dynamics model of a four-Mecanum-wheeled robot considering mass eccentricity and friction uncertainty is derived using the Lagrange’s equation. Then based on the dynamics model, a nonlinear stable adaptive control law is derived using the backstepping method via Lyapunov stability theory. In order to compensate for the model uncertainty, a nonlinear damping term is included in the control law, and the parameter update law with σ-modification is considered for the uncertainty estimation. Computer simulations are conducted to illustrate the suggested control approach.
基金The authors would like to thank the United Arab Emirates University for funding this work under Start-Up grant[G00003321].
文摘This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobilerobot path planning problem in a two-dimensional map with the presence ofconstraints. This approach gives the possibility to find the path for a wheelmobile robot considering some constraints during the robot movement inboth known and unknown environments. The feasible path is determinedbetween the start and goal positions by generating wave of points in alldirection towards the goal point with adhering to constraints. In simulation,the proposed method has been tested in several working environments withdifferent degrees of complexity. The results demonstrated that the proposedmethod is able to generate efficiently an optimal collision-free path. Moreover,the performance of the proposed method was compared with the A-star andlaser simulator (LS) algorithms in terms of path length, computational timeand path smoothness. The results revealed that the proposed method hasshortest path length, less computational time and the best smooth path. Asan average, GLS is faster than A∗ and LS by 7.8 and 5.5 times, respectivelyand presents a path shorter than A∗ and LS by 1.2 and 1.5 times. In orderto verify the performance of the developed method in dealing with constraints, an experimental study was carried out using a Wheeled Mobile Robot(WMR) platform in labs and roads. The experimental work investigates acomplete autonomous WMR path planning in the lab and road environmentsusing a live video streaming. Local maps were built using data from a live video streaming with real-time image processing to detect segments of theanalogous-road in lab or real-road environments. The study shows that theproposed method is able to generate shortest path and best smooth trajectoryfrom start to goal points in comparison with laser simulator.
基金Sponsored by Hi-Tech Research and Development Program of China(Grant No. 2001AA422380)
文摘The robot consists of a quadruped mechanism and two active dual-wheel casters possesses the advantages of wheeled and legged mechanism, and can quickly move on the relatively plane ground with the wheeled mechanism, and can walk on the extremely uneven terrain with the legged mechanism. The effectiveness of the motion design of the hybrid robot is iHustrated by simulation results.
文摘An irmovative mobile robot that has reconfigurable loeomotion chassis and reconfigurable bionic wheels has been developed to meet the needs of different payload and different terrain. Several prototypes have been achieved by the recortfiguration. By modeling relative comparison coefficients, these prototypes are analyzed in terms of geometrical parameter of trafficability, static stability and maneuverability. The effects of reconfiguration on these indices of robot performance can be compared, i.e. the variable height of chassis h has the biggest effect, the variable length of chassis 1 is the second, then is the camber angle β and the caster angle α. Some principles for reconfiguration are proposed.
基金supported by the Innovation Project of Guangxi Graduate Education(Grant No.YCSW2022436).
文摘Considering the wheeled mobile robot(WMR)tracking problem with velocity saturation,we developed a data‐driven iterative learning double loop control method with constraints.First,the authors designed an outer loop controller to provide virtual velocity for the inner loop according to the position and pose tracking error of the WMR kinematic model.Second,the authors employed dynamic linearisation to transform the dynamic model into an online data‐driven model along the iterative domain.Based on the measured input and output data of the dynamic model,the authors identified the parameters of the inner loop controller.The authors considered the velocity saturation constraints;we adjusted the output velocity of the WMR online,providing effective solutions to the problem of velocity saltation and the saturation constraint in the tracking process.Notably,the inner loop controller only uses the output data and input of the dynamic model,which not only enables the reliable control of WMR trajectory tracking,but also avoids the influence of inaccurate model identification processes on the tracking performance.The authors analysed the algorithm's convergence in theory,and the results show that the tracking errors of position,angle and velocity can converge to zero in the iterative domain.Finally,the authors used a simulation to demonstrate the effectiveness of the algorithm.
文摘A supportive mobile robot for assisting the elderly is an emerging requirement mainly in countries like Japan where population ageing become relevant in near future.Falls related injuries are considered as a critical issue when taking into account the physical health of older people.A personal assistive robot with the capability of picking up and carrying objects for long/short distances can be used to overcome or lessen this problem.Here,we design and introduce a 3 D dynamic simulation of such an assistive robot to perform pick and place of objects through visual recognition.The robot consists of two major components;a robotic arm or manipulator to do the pick and place,and an omnidirectional wheeled robotic platform to support mobility.Both components are designed and operated according to their kinematics and dynamics and the controllers are integrated for the combined performance.The objective was to improve the accuracy of the robot at a considerably high speed.Designed mobile manipulator has been successfully tested and simulated with a stereo vision system to perform object recognition and tracking in a virtual environment resembling aroom of an elderly care.The tracking accuracy of the mobile manipulator at an average speed of 0.5 m/s is 90%and is well suited for the proposed application.
文摘Environmental issues like pollution are major threats to human health.Many systems are developed to reduce pollution.In this paper,an optimal mobile robot design to reduce pollution in Green supply chain management system.Green supply chain management involves as similating environmentally and eco-nomically feasible solutions into the supply chain life-cycle.Smartness,advanced technologies,and advanced networks are becoming pillars of a sustainable supply chain management system.At the same time,there is much change happening in the logistics industry.They are moving towards a new logistics model.In the new model,robotic logistics has a vital role.The reasons for this change are the rapid growth of the e-commerce business and the shortage of workers.The advantages of using robotic logistics are reduction in human errors,faster delivery speed,better customer satisfaction,more safety for workers,and high workforce adaptability.A robot with rocker-bogie suspension is a six-wheeled mobile platform that has a distinctive potential to keep all wheels on the ground continuously.It has been designed to traverse rough and uneven terrain by distributing the load over its wheels equally.However,there is a limitation to achieving high-speed mobility against vertical barriers.In this research,an optimal design of product delivery wheeled robots for a sustainable supply chain system is proposed to ensure higher adaptability and maximum stability during climbing staircases.The design parameters of the proposed robot are optimized using Taguchi Method.The aim is to get a smooth trajectory of the robot’s center-of-mass.The proposed approach realizes a robot with much-improved stability which can climb over heights more than the size of the wheel(i.e.,3 times the radius of wheels).The results reveal that the modified rocker-bogie system not only increases the stair-climbing capability but also thwarts instability due to overturning of a wheel of the robot.